IV.C.9 Advanced Water-Gas-Shift Membrane Reactor

Thomas Henry Vanderspurt United Technologies Corp. 411 Silver Lane East Hartford, CT 06118 Phone: (860) 610-7150; Fax: (860) 610-2151; E-mail: vanderth@utrc.utc.com

DOE Technology Development Manager: John Winslow Phone: (412) 386-6072; Fax: (412) 386-4822; E-mail: John.Winslow@netl.doe.gov

DOE Project Officer: Arun Bose Phone: (412) 386-4467; Fax: (412) 386-4604; E-mail: Arun.Bose@netl.doe.gov

Contract Number: DE-FC26-05NT42453

Start Date: June 2, 2005 Projected End Date: June 30, 2007

Objectives

- Identify a suitable Pd-Cu tri-metallic alloy membrane with high stability and commercially relevant hydrogen permeation in the presence of carbon monoxide and trace amounts of sulfur.
- Identify and synthesize a water-gas-shift (WGS) catalyst with a high operating life that is sulfur and chlorine tolerant at low concentrations of these impurities.

Technical Barriers

This project addresses the following technical barriers from the Hydrogen Production section of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan:

- L. Durability
- M. Impurities
- N. Defects
- O. Selectivity
- P. Operating Temperature
- Q. Flux
- S. Cost

The project also addresses one or more of the barriers described in Section 5.1.5.1., Technical Barriers – Central Production Pathway in the Hydrogen from Coal – Research, Development, and Demonstration Plan, which was issued by the DOE Office of Fossil Energy.

Technical Targets

This project is conducting atomistic and thermodynamic modeling studies to identify a Pd-Cu tri-metallic alloy membrane with high stability to provide commercially-relevant hydrogen permeation rates in the presence of trace amounts of carbon monoxide and sulfur. The project effort will also seek to identify and synthesize a WGS catalyst with a high engineering and operating lifetime, which will also be sulfur and chlorine tolerant at low concentrations of these impurities.

Tables 1 and 2 list the targets that the project will attempt to meet during its implementation.

Performance Criteria	Units	2003 Status	2005 Target	2010 Target	2015 Target
Flux Rate	scfh/ft ²	60	100	200	300 ^b
Cost	\$/ ft ²	2,000	1,500	1,000	<\$500
Durability	Hours	<8,760	8,760	26,280	>43,800
∆P Operating Capability	psi	100	200	400	400-1000
Hydrogen Recovery	% of total gas	60	>70	>80	>90
Hydrogen Purity	% of total (dry) gas	>99.9	>99.9	>99.95	99.99

Table 1.	Technical Targets: Ion	Transfer Membranes for Hydrogen	Separation and Purification ^a
----------	------------------------	---------------------------------	--

^a Targets are derived from Table 3.1.5. from the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan, March 2005.

^b Flux upper limit for ion transport membranes.

Table 2. Technical Targets for the Water Gas S
--

Performance Criteria	Units	Current Status	2005 Target	2010 Target	2015 Target
Reactor Type	-	Multiple Fixed beds	Multiple Fixed beds To be determined		
Catalyst Form	-	Pellets	To be determined		
Active Metal	-	Cu/Zn or Fe/Cr or Co/Mo	To be determined		
Temperature	°C	200-550	300-450	300-500	200-600
Pressure	psia	450-1150	450	750	>1,000
Approach to Equilibrium	°C	8-10	10	6	<4
Min Steam/Co Ratio	Molar	2.6	3.0	2.5	<2
Sulfur Tolerance	-	Varies	Low	Moderate	High
Chloride Tolerance	-	Varies	Low	Moderate	High
Water Tolerance	-	Varies	Low	Moderate	High
Stability/Durability	Years	3-7	3	7	>10
Reactor Cost Reduction	%	-	-	>15%	>30%

^a Targets are derived from Table 6 of the Hydrogen from Coal RD&D Program, June 10, 2004.

Approach

- Identify, through a combination of atomistic and thermodynamic modeling, a suitable Pd-Cu tri-metallic alloy membrane that displays high stability and produces a commercially relevant hydrogen permeation rate of under 42 atm of H₂, CO, CO₂, and H₂O containing ~8.8 atm partial pressure of carbon monoxide and 0.004 atm partial pressure H₂S (~100 ppm) in the presence of at least 24 atm of steam.
- Identify and develop a WGS catalyst with robust qualities and high operating life- time through a combination of atomistic modeling to identify target catalyst structures, catalyst synthesis to realize these structures, micro-reactor kinetics determination, and >1000 hour life testing. The target catalyst activity is a projected precious metal turnover frequency of 0.5 moles CO/moles total precious metal/sec at ~400°C

after 45,000 hours of operation under 42 atm of cleaned, oxygen-blown coal gas with a H_2O/CO ratio of ~3 and containing about ~100 ppm sulfur species.

Accomplishments

This project is newly initiated and no there are no accomplishments to report to date.

DOE Hydrogen Program