IV.I.13 NMR of Hydrogen Storage Systems: Ionic Hydrides and Mobile Species

PI: Mark S. Conradi Washington University

Contract Number: DE-FG02-05ER46256

Report dated 15 April 2009 and covers 01 September 2008 – 15 April 2009

Major Accomplishments for Period 01 September 2008 – 15 April 2009

In the past, hydrogen storage solids were almost exclusively *interstitial metallic hydrides*. These are noted for their generally good hydrogen diffusion kinetics; here we report $\omega_{\rm H}$, the rate of atomic-level hydrogen hopping events. This is nicely demonstrated in Figure 1, where $\omega_{\rm H}$ appears on a logarithmic scale for the prototypical ionic system MgH₂ and in the metallic systems ScH₂, Mg-ScH_x, and LaNi₅H_{6.8}. Clearly, MgH₂ has much slower dynamics than the metals, and a much higher activation energy. Remarkably, MgH₂ can be converted from the rutile (ionic) structure to the fluorite (metallic) structure with as little as 20% Sc, though Figure 1 is for 35% Sc; the H hopping in the metallic phase is much faster than in MgH₂ and is even a bit faster than in ScH₂.

While the metallic hydrides show good H kinetics, an essential feature of any hydrogen storage system, the mass-fraction of H, is too small. Thus, interest has turned to the lightweight hydrides, such as LiH, MgH₂ (7.6 w/w%), NaMgH₃, and LiBH₄ (18 w/w%). These are all *ionic* or *complex* hydrides. We examined coarsegrained MgH₂ as the prototypical ionic hydride. The rate $\omega_{\rm H}$ of H hopping remains too slow to narrow the hydrogen NMR line up to 400°C, so $\omega_{\rm H} < 10^5$ s⁻¹. This confirms the reputation of MgH₂ for slow kinetics – rehydriding Mg metal often is halted once a thin skin of MgH₂ forms and blocks further reaction progress.

To detect and measure such slow motions, we turned to the ultraslow motion experiment of Ailion and Slichter. Standard spin Zeeman-order is converted to spin dipolar-order at the start of the experiment. This order is found to decay with time constant T_{1D} . Because dipolar order is a correlation between a spin's orientation and the local dipolar field from its neighbors, and because the local field varies from site-to-site with little correlation, a single atomic jump destroys a given spin's contribution to the dipolar order. Thus, the measured relaxation rate $1/T_{1D}$ is essentially equal to the rate of atomic jumps for a typical H atom.

Results are presented in Figure 2 for coarse-grain MgH₂. The straight-line region represents thermally activated H motion, from 0.1 s⁻¹ at 250°C to 400 s⁻¹ at 400°C; these are indeed slow motions. The activation energy is 1.72 eV (\pm 7%), a high value that explains the slow kinetics of MgH₂. At lower temperatures, the data curve and are no longer controlled by H kinetics; the

FIGURE 1.

FIGURE 2.

dipolar order decays through coupling to the ^{25}Mg spins and the quadrupolar T_1^{-1} process. The overall fit to the data incorporates both mechanisms and is excellent.

We investigated a number of ball-milled MgH₂ materials supplied by collaborators at Savannah River, Université de Ouébec Trois Rivieres, and GKSS (Germany). Lineshape data are presented in Figure 3a for the most "accelerated" system – MgH₂ with 0.5 mol% Nb₂O₅ from GKSS. Already at 100°C, a line-narrowed component appears, indicating a small fraction of mobile H atoms (here "mobile" means $\omega_{H} > 10^{5} \text{ s}^{-1}$). With increasing temperatures, the fraction of intensity in the narrowed line (see graph in Figure 3b) increases up to $\sim 31\%$ at 400°C. Two aspects are worthy of note: mobile H atoms appear already at low temperature (100°C) and the sample is *inhomogeneous*, with some slow-moving H and some fast moving. Presumably, the sample inhomogeneity reflects a very broad distribution of local environments, due to the aggressive mechanical activation process.

In addition, the relaxation time T_1 decreases from 3,000 s to 0.1 s in the ball-milled GKSS material. This rapid relaxation, only weakly temperature dependent, demonstrates a large concentration of unpaired electron spins from mechanical rupture of the bonds.

The behavior of ball-milled MgH_2 is similar to $NaMgH_3$, ball-milled from 1:1 NaH and MgH_2 . The hydrogen NMR line narrows starting below 100°C. The narrowing is inhomogeneous up to 275°C, beyond which the rest of the line narrows rapidly. The T_1 of NaMgH₃ is a few seconds, remarkably short for such a 'rigid' spin system; presumably, a large concentration of unpaired electrons are present here as well.

LiBH₄ has much faster atomic motions. At all temperatures above -100°C, the tetrahedral BH₄ units reorient rapidly, as shown in earlier work. At a solid-solid transition at 109°C, the Li⁺ motion increases dramatically. As in Figure 4, the ⁷Li resonance narrows so that quadrupolar satellites at ± 10 kHz are clearly resolved. Thus, the high-temperature (HT) phase may be superionic, though the Li⁺ motion is $\approx 10^9$ s⁻¹, far below the liquid-like rates of some superionics.

The H and ¹¹B resonances also narrow from 170-240°C, well into the HT phase (see Figures 5, 6, and 7). The activation energy extracted from H linewidth and T_{1D} data is 0.72 eV, ±5%. The narrowing of the ¹¹B resonance is crucial: if the BH₄ units were not diffusing and the H were moving by exchanging between neighboring BH₄ units, the ¹¹B linewidth could not decrease below that predicted from B-B dipolar interactions. This limiting width is calculated to be 1,600 Hz, while the narrowest line in Figure 7 is 300 Hz (all values FWHM). So, the BH₄ *are* diffusing as intact units.

FIGURE 3.

FIGURE 4.

Measurements in molten $LiBH_4$ at 285°C rule out rapid H-exchange between BH_4 units. As displayed in Figure 8, the ¹¹B spectrum has 5 lines of intensity ratio 1:4:6:4:1. This is unambiguous evidence that each BH_4 has long-lived spin states of the 4 H atoms (i.e., 4 up, 3 up + 1 down, 2 up + 2 down, etc.). Rapid exchange would lead to collapse (averaging, narrowing) of the 5-line pattern. From the linewidth in Figure 8, the BH_4 lifetime against H-exchange is at least 16 ms. From spin-echo experiments, the lifetime is at least several seconds. Thus, exchange in the melt is slow; in the solid the exchange will be even slower. Thus the previously observed isotopic scrambling of BH_4 , BH_3D , BH_2D , etc does not occur through rapid H-exchange.

FIGURE 7.

Separate NMR isotope scrambling experiments starting with mixed LiBH_4 and LiBD_4 powders find nearly complete isotopic mixing in 30 minutes or less. Thus, in the melt, H-exchange falls in between the several second and 30 minute time scales.

Publications

1. "Apparatus for High Temperatures and Intermediate Pressures for *In Situ* NMR of Hydrogen storage Systems," D.B. Baker and Mark S. Conradi, Rev. Sci. Instrum. **76**, 073906 (2005). **2.** "Proton Magnetic Resonance Spectra of YH_3 and LuH_3 ," S.K. Brady, Mark S. Conradi, G. Majer, and R.G. Barnes, Phys. Rev. B **72**, 214111 (2005).

3. "The evolution of Structural Changes in Ettringite during Thermal Decomposition," M.R. Hartman, S.K. Brady, R. Berliner, and Mark S. Conradi, J. Solid State Chem. **179**, 1259-1272 (2006).

4. "Comparison of Spin Relaxation in the Metal-Hydrogen Systems ZrNiHx and ZrNiDx," C.D. Browning, T.M. Ivancic, R.C. Bowman, Jr., and Mark S. Conradi, Phys. Rev. B **73**, 134113 (2006)

5. "Spin Sorting: Apparent Longitudinal Relaxation without Spin Transitions," Y.V. Chang , S.E. Haywood, J.C. Woods, and M.S. Conradi, Chem. Phys. Lett. **437**, 126-131 (2007).

6. "NMR to Determine Rates of Motion and Structures in Metal-Hydrides," M.S. Conradi, M.P. Mendenhall, T.M. Ivancic, E.A. Carl, C.D. Browning, P.H.L. Notten, W.P. Kalisvaart, P.C.M.M. Magusin, R.C. Bowman, Jr., S.-J. Hwang, and N.L. Adolphi, J. Alloys Compounds **446**-**447**, 499-503 (2007).

7. "Rate of Hydrogen Motion in Ni-Substituted LaNi₅H_x from NMR," M.P. Mendenhall, R.C. Bowman, Jr.,
T.M. Ivancic, and M.S. Conradi, J. Alloys Compounds 446-447, 495-498 (2007).

8. "Molecular H₂ Trapped in AlH₃ Solid," L. Senadheera, E.A. Carl, T.M. Ivancic, M.S. Conradi, R.C. Bowman, Jr., S.-J. Hwang, and T.J. Udovic, J. Alloys Compounds **463**, 1-5 (2008).

9. "Rotation and Diffusion of H_2 in Hydrogen-Ice Clathrate by NMR," L. Senadheera and M.S. Conradi, J. Phys. Chem. B **111**, 12097-12102 (2007).

10. "Hydrogen Nuclear Spin Relaxation in Hydrogen-Ice Clathrate," L. Senadheera and M.S. Conradi, J. Phys Chem. A **112**, 8303-8309 (2008).

11. "Hydrogen NMR of H₂-TDF-D₂O Clathrate," L. Senadheera and M.S. Conradi, J. Phys Chem. B **112**, 13695-13700 (2008).

12. "Atomic Motions in $LiBH_4$ by NMR," R.L. Corey, D.T. Shane, R.C. Bowman, Jr. and M.S. Conradi, J. Phys. Chem. C **112**, 18706-18710 (2008).

13. "Hydrogen Motion in Magnesium Hydride by NMR," R.L. Corey, T.M. Ivancic, D.T. Shane, E.A. Carl, R.C. Bowman, Jr., J.M. Bellosta von Colbe, M. Dornheim, R. Bormann, J. Huot, R. Zidan, A.C. Stowe, and M.S. Conradi, J. Phys. Chem. C 112, 19784 -19790 (2008).

14. "High Pressure NMR," Mark S. Conradi, in Encyclopedia of Magnetic Resonance, edited by R.K. Harris and R. Wasylishen, Wiley, Chichester UK, 2008. DOI: 10.1002/9780470034590.emrstm1075.

15. "Exchange of Hydrogen Atoms Between BH4 in LiBH4," D.T. Shane, R.C. Bowman, Jr., and M.S. Conradi, J. Phys. Chem. C 113, 5039 – 5042 (2009).

16. "NMR of Hydrogen Storage Compound NaMgH3," R.L. Corey, D.T. Shane, R.C. Bowman, Jr., R. Zidan, A.C. Stowe, and M.S. Conradi, In preparation.

People Working on DOE Project

Robert L. Corey visiting professor from South Dakota School of Mines and Technology, 2 months per year, 22%

Robert C. Bowman, Jr. RCB Hydrides LLC. Bowman is a consultant and is co-investigator.

Graduate Students:

- Timothy Ivancic, full support.
- David T. Shane, full support.

Undergraduate student:

Charles McIntosh, summer student, 3 months.

Collaborators at other institutions:

- Ragaiy Zidan, Ashley Stowe (now at Y12, Oak Ridge), Savannah River National Laboratory.
- Son-Jong Hwang, California Inst. Of Technology, Chemistry NMR Facility, sub-contract leader.
- Jacques Huot, U. Quebec Three Rivers.
- Martin Dornheim, Rudiger Bormann, Jose Bellosta von Colbe, GKSS in Germany.