II.F.4 Characterization of Materials for Photoelectrochemical (PEC) Hydrogen Production

Clemens Heske
Department of Chemistry
University of Nevada, Las Vegas
4505 S. Maryland Parkway
Las Vegas, NV 89154-4003
Phone: (702) 895-2694
Email: heske@unlv.nevada.edu

DOE Manager
HQ: Eric Miller
Phone: (202) 287-5829
Email: Eric.Miller@hq.doe.gov

Project Start Date: November 4, 2011
Project End Date: September 30, 2012

Fiscal Year (FY) 2012 Objectives

Enhance the understanding of PEC materials and interfaces and promote breakthrough discoveries by:

- Utilizing and developing cutting-edge soft X-ray and electron spectroscopy characterization.
- Determining electronic and chemical structures of PEC candidate materials.
- Addressing materials performance, materials lifetime, and capital costs through close collaboration with the National Renewable Energy Laboratory (NREL) and other partners from the PEC working group.

Technical Barriers

This project addresses the following technical barriers from the Production section of the Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan:

(Y) Materials Efficiency
(Z) Materials Durability
(AA) PEC Device and System Auxiliary Material

Technical Targets

- Collaborate closely with partners at NREL, Lawrence Livermore National Laboratory (LLNL), and others within the DOE PEC working group to determine the electronic and chemical structure of candidate materials for solar water splitting.
- Aid the collaboration partners in the development and modification of novel candidate materials.
- Monitor deliberately introduced modifications of PEC candidate materials in view of the electronic and chemical structure.

FY 2012 Accomplishments

- Performed non-invasive cleaning procedure using low-energy Ar⁺ ion treatment on an air-exposed GaInP₂ film, removing all surface C and most surface O. This process allows determination of the true surface electronic structure including the electronic surface band gap, band edge energies, and the work function.
- Worked with collaborators at NREL to reduce ambient-air-related surface adsorbates to preserve the relevant surfaces for water splitting. Achieved a dramatic reduction in the amount of surface contaminants.
- Used synchrotron-based N K X-ray emission spectroscopy (XES) to determine both the relative amount and the chemical environment of N-treated GaInP₂ films to elucidate differences between effective and ineffective treatments.
- Found good agreement of experimental and theoretical X-ray absorption spectroscopy (XAS) in GaP and InP, in close collaboration with our partners at LLNL.
- In situ gas cell for XES/XAS studies was tested and is operational, a liquid/solid interface electrochemical cell is in development.

Introduction

This project is embedded into the Department of Energy’s efforts to develop materials for PEC water splitting. If successful, PEC will provide an important route to convert the energy supplied by solar irradiation into a transportable fuel. In order to achieve this goal, suitable materials need to be developed that simultaneously fulfill several requirements, among them chemical stability and optimized electronic structure, both for absorption of the solar spectrum and for electrochemical water splitting at a solid/electrolyte interface. This project experimentally derives the chemical and electronic structure information to (a) judge the suitability of a candidate material, (b) show pathways towards a deliberate optimization of a specific material, and (c) monitor whether deliberate modifications of the material indeed lead to the desired changes in electronic and chemical structure.
Approach

A unique “tool chest” of experimental techniques is utilized that allows addressing all technical barriers related to electronic and chemical properties of various candidate materials. With these techniques, it is possible to derive surface and bulk band gaps, the energy level alignment at interfaces, the chemical stability of the materials, and the impact of alloying and doping.

The tool chest includes photoelectron spectroscopy with X-ray (XPS [1]) and ultraviolet photoelectron spectroscopy (UPS) excitation to determine the occupied electronic states (core levels and valence electrons), and inverse photoemission spectroscopy (IPES) to determine the unoccupied electronic states. These techniques, performed in the lab at UNLV, are surface-sensitive and allow a detailed determination of the electronic and chemical surface structure. They are complemented by XES and XAS spectroscopy, performed at Beamline 8.0 of the Advanced Light Source, Lawrence Berkeley National Laboratory. XES and XAS also probe the occupied and unoccupied electronic states, but with an increased information depth. Furthermore, they also give insight into the chemical structure, again complementary to the electron-based techniques performed in the lab at UNLV.

Results

In collaboration with our partners at NREL (T. Deutsch, A. Welch, and J. Turner), we have conducted an investigation of GaInP₂ thin film surfaces. Results were immediately shared with the collaboration partners and discussed in detail through PowerPoint presentations, at phone conferences, and working group meetings. Among the multitude of data obtained, this report focuses on the ion treatment and other methods to remove or reduce surface contamination, so that the underlying electronic structure of the “true” GaInP₂ surface can be determined and used as a benchmark for the study of surfaces exposed to controlled environments (including air, oxygen, and water/electrolyte). Further results, including the N K XES spectra and the comparisons of experimental and theoretical XAS spectra for GaP and InP, are shown in the annual review presentation (the theoretical work was performed by our partners at LLNL).

The surface sensitivity of XPS implies that small amounts of C and O at the surface can have a large effect on the apparent (as-measured) electronic structure (i.e., surface adsorbates attenuate the underlying relevant electronic structure of GaInP₂). Therefore, a low-energy (50 eV) Ar⁺ ion treatment series was performed to remove these contaminants without altering the GaInP₂ surface, thereby revealing the relevant electronic structure of the active PEC material. Note that this treatment is quite different from conventional “sputter-cleaning”, in which significantly higher ion energies (500 to 5,000 eV) have to be used.

Table 1 lists the exposure times for each treatment (as well as the cumulative treatment time) of this series.

<table>
<thead>
<tr>
<th>Treatment Number</th>
<th>Length of Time Under 50 eV Ar⁺ Ion Treatment</th>
<th>Cumulative Time Under 50 eV Ar⁺ Ion Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Received</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>15 minutes</td>
<td>15 minutes</td>
</tr>
<tr>
<td>2</td>
<td>30 minutes</td>
<td>45 minutes</td>
</tr>
<tr>
<td>3</td>
<td>30 minutes</td>
<td>75 minutes</td>
</tr>
<tr>
<td>4</td>
<td>1 hour</td>
<td>135 minutes</td>
</tr>
<tr>
<td>5</td>
<td>2 hours</td>
<td>255 minutes</td>
</tr>
<tr>
<td>6</td>
<td>2 hours</td>
<td>375 minutes</td>
</tr>
<tr>
<td>7</td>
<td>2 hours</td>
<td>495 minutes</td>
</tr>
<tr>
<td>8</td>
<td>4 hours, 30 minutes</td>
<td>765 minutes</td>
</tr>
</tbody>
</table>

As a first step, we examine the Mg Kα XPS survey spectra for this ion-treatment series, as shown in Figure 1. The spectra are normalized to the same background and offset for visibility. Most notable here is the increase of the various Ga, In, and P signals, while both C and O decrease as a function of treatment time. The surface contaminants are clearly being removed, and no longer attenuating the signal from the underlying film of interest.

Further surface analysis is based on selected detail spectra, as displayed in Figure 2. In the O 1s region, we note that the O signal does not simply decrease with increasing ion treatments, but also shifts toward lower binding energy. This change is likely the result of two separate O species on the film, one of which is both more abundant and more
easily removed with ion treatment. The O signal is not fully removed, in contrast to the C signal, which becomes indistinguishable from the background starting at the 5th treatment step. The P 2p spectra clearly show two different P species, one associated with the GaInP$_2$ film (~128 eV) and one at higher binding energy (~134 eV) with a surface oxide that is removed with ion treatment.

One of the most powerful and unique abilities in our “tool chest” is the use of UPS to measure the valence band and the use of IPES to derive the corresponding information for the conduction band [2]. These two techniques can be combined to determine the electronic surface band gap, as shown in Figure 3. Simultaneous optimization of the two band edge positions (with respect to the Fermi energy) and the band gap is essential for PEC materials - all three can be derived from these measurements and are indicated with vertical lines (for the band edges) and numerical values (for the band gap) in Figure 3. The band gap narrows with successive ion treatments, largely due to the valence band maximum shifting towards the Fermi energy with treatment time. Since the bulk band gap for GaInP$_2$ is 1.75 eV, as compared to the final electronic surface band gap of 1.31 eV, we ascribe this difference to an ion-induced modification of the electronic surface structure (beyond the simple removal of surface adsorbates), which strongly indicates the need for optimal surface preservation between growth and characterization, so that the need for additional surface cleaning steps is minimized.

We have thus worked with our collaborators at NREL to eliminate air exposure of the GaInP$_2$ films between growth and characterization. For this purpose, John Geisz and Waldo...
Olavaria (NREL) attached an N₂-purged glove bag to their synthesis reactor and removed the sample into this glove bag where it was packaged using a vacuum seal device. At UNLV, the package was opened in a N₂ glove box and introduced to ultra-high vacuum (UHV) for analysis.

While the analysis of this sample is still ongoing, Figure 4 demonstrates the effectiveness of this change in sample handling. Mg Kα XPS survey spectra are shown for the above-discussed ion-treated sample, both as-received and after the 7th ion-treatment step, while the newer sample is plotted as-received and after a few weeks of storage in UHV. The differences in the films are most apparent for the significantly reduced C 1s (~285 eV) and O 1s (~530 eV) signals and the significantly increased In and Ga signals (comparable to those after the 7th ion treatment). We expect this cleaner starting point to allow us to reach our goal of measuring the “benchmark” electronic structure of GaInP₂ films.

Conclusions and Future Directions

Conclusions

- Conducted experiment-theory comparisons of XAS spectra of GaP and InP, together with our theory partners at LLNL.
- In situ gas cell tested and operational, liquid/solid interface electrochemical cell for XES/XAS studies in development.

Future Directions

- We will determine the benchmark electronic and chemical properties of GaInP₂ thin film surfaces as a baseline and will study the impact of controlled surface exposures (air, oxygen, water/electrolyte) on these characteristics.
- We will further correlate our results with theoretical calculations from our partners at LLNL, extending these activities to XES measurements as well.
- We will continue our development of a liquid/solid interface electrochemical cell for XES/XAS studies.

FY 2012 Publications/Presentations

1. “What electronic structure should a PEC device have (and can we measure it)?”, C. Heske, SPIE Optics & Photonics Conference, San Diego, August 12–16, 2012 (invited oral).
4. “Using soft x-rays to look into (buried) interfaces of energy conversion devices”, C. Heske, Department of Physics, Northern Arizona University, February 28, 2012 (invited oral).
6. “How can a synchrotron help to make solar devices better?”, C. Heske, Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Nov. 25, 2011 (invited oral).
References

