XVII. Project Listings by State

Alabama		
V.F.5	CFD Research Corporation: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization	V-226
V.F.5	ESI US R&D: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization	V-226
Arizona		
VI.3	Arizona State University: Adaptive Process Controls and Ultrasonics for High-Temperature PEM MEA Manufacture	VI-17
Arkansas		
XII.4	FedEx Freight: Fuel Cell-Powered Lift Truck FedEx Freight Fleet Deployment	XII-21
California		
II.C.1	University of Southern California, Los Angeles: Development of Hydrogen Selective Membranes/Modules as Reactors/Separators for Distributed Hydrogen Production	II-23
II.E.1	Science Applications International Corporation: Solar High-Temperature Water Splitting Cycle with Quantum Boost	II-49
II.E.1	Thermochemical Engineering Solutions: Solar High-Temperature Water Splitting Cycle with Quantum Boost	II-49
II.E.1	University of California, San Diego: Solar High-Temperature Water Splitting Cycle with Quantum Boost	II-49
II.E.3	Sandia National Laboratories: Solar Hydrogen Production with a Metal Oxide-Based Thermochemical Cycle.	II-60
II.F.1	Stanford University: Directed Nano-Scale and Macro-Scale Architectures for Semiconductor Absorbers and Transparent Conducting Substrates for Photoelectrochemical Water Splitting	II-68
II.F.1	Board of Trustees of the Leland Stanford Junior University: Directed Nano-Scale and Macro-Scale Architectures for Semiconductor Absorbers and Transparent Conducting Substrates for	
	Photoelectrochemical Water Splitting	
II.F.2	Stanford University: Semiconductor Materials for Photoelectrolysis	11-/4
II.G.3	J. Craig Venter Institute: Hydrogen from Water in a Novel Recombinant Oxygen-Tolerant Cyanobacterial System	II-113
II.G.4	University of California, Berkeley: Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures.	
III.1	Sandia National Laboratories: Hydrogen Embrittlement of Structural Steels	
III.3	Ben C. Gerwick Inc.: Vessel Design and Fabrication Technology for Stationary High-Pressure Hydrogen Storage.	
III.4	Lawrence Livermore National Laboratory: Failure Analysis, Permeation, and Toughness of Glass Fiber Composite Pressure Vessels for Inexpensive Delivery of Cold Hydrogen	III-22
III.4	Spencer Composites Corporation: Failure Analysis, Permeation, and Toughness of Glass Fiber Composite Pressure Vessels for Inexpensive Delivery of Cold Hydrogen	
III.7	HyGen Industries: Development of a Centrifugal Hydrogen Pipeline Gas Compressor	
III.11	Lawrence Livermore National Laboratory: LLNL/Linde 875 bar Liquid Hydrogen Pump for High Density Cryogenic Vessel Refueling	III-51
III.11	Linde LLC: LLNL/Linde 875 bar Liquid Hydrogen Pump for High Density Cryogenic Vessel	III-51

California (Continued) IV.C.2 University of California, Los Angeles: A Joint Theory and Experimental Project in the Synthesis IV.C.6 IV.C.7 IV.C.8 IV.C.11 H2 Technology Consulting LLC: Hydrogen Sorbent Measurement Qualification and Characterization . . . IV-109 IV.D.1 IV.D.1 IV.D.4 Jet Propulsion Laboratory: Key Technologies, Thermal Management, and Prototype Testing for California Institute of Technology: Key Technologies, Thermal Management, and Prototype Testing IV.D.4 IV.E.2 H2 Technology Consulting LLC: Best Practices for Characterizing Engineering Properties of IV.H.6 University of California, Riverside: Synthetic Design of New Metal-Organic Framework Materials for Hydrogen Storage IV-229 IV.H.14 University of California, Santa Barbara: Computational studies of hydrogen interactions with IV.H.17 University of California, Davis: Heavy Cycloadditions: Reactions of Diagailene with Cyclic IV.H.19 Stanford University: Influence of Pressure on Physical Property of Ammonia Borane and its University of California, Irvine: Enlarging the Potential Market for Stationary Fuel Cells Through V.A.8 Lawrence Berkeley National Laboratory: A Total Cost of Ownership Model for Design and V.A.10 University of California, Berkeley: A Total Cost of Ownership Model for Design and Manufacturing V.A.10 V.D.1 V.D.4 Stanford University: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes. V-107 V.D.5 Jet Propulsion Laboratory: Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading V-111 VD7University of California, Riverside: The Science and Engineering of Durable Ultralow PGM Catalysts.... V-121 V.D.8 Lawrence Berkeley National Laboratory: Molecular-Scale, Three-Dimensional Non-Platinum Lawrence Berkeley National Laboratory: Durability Improvements through Degradation V.E.2 Mechanism Studies V-175 V.E.5 V.F.2 Lawrence Berkeley National Laboratory: Fuel Cell Fundamentals at Low and Subzero Temperatures V-211 V.F.3 Sandia National Laboratories: Development and Validation of a Two-Phase. Three-Dimensional Lawrence Berkeley National Laboratory: Transport Studies Enabling Efficiency Optimization V.F.4 of Cost-Competitive Fuel Cell Stacks V-222 V.J.1 Intelligent Energy: Development and Demonstration of a New-Generation High Efficiency 10-kW Stationary Fuel Cell System......V-272 V.J.5

Calif	fornia (Continued)	
7	VI.6	Quantum Fuel Systems Technologies Worldwide, Inc.: Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels	. VI-31
7	VII.4	University of California, Irvine: California Hydrogen Infrastructure Project	.VII-26
7	VII.4	National Fuel Cell Research Center: California Hydrogen Infrastructure Project	.VII-26
7	VII.7	California State University, Los Angeles: Sustainable Hydrogen Fueling Station, California State University, Los Angeles.	. VII-38
7	VII.7	Weaver Construction: Sustainable Hydrogen Fueling Station, California State University, Los Angeles	. VII-38
7	VIII.1	Sandia National Laboratories: Hydrogen Safety, Codes and Standards R&D – Release Behavior	. VIII-9
1	VIII.2	Sandia National Laboratories: Risk-Informed Safety Requirements for H2 Codes and Standards Development.	VIII-15
7	VIII.4	Sandia National Laboratories: Hydrogen Materials and Components Compatibility	VIII-22
7	VIII.5	Sandia National Laboratories: Component Testing for Industrial Trucks and Early Market	
		Applications	VIII-25
7	VIII.6	Steele Consulting: National Codes and Standards Coordination	
7	VIII.10	City of Santa Fe Springs: Hydrogen Safety Panel	
7	VIII.12	California Fuel Cell Partnership: Hydrogen Emergency Response Training for First Responders	VIII-52
I	X.3	University of California, Berkeley: Hydrogen Technology and Energy Curriculum (HyTEC)	. IX-13
I	X.3	Humboldt State University: Hydrogen Technology and Energy Curriculum (HyTEC)	
7	X.3	Oorja Protonics, Inc.: Direct Methanol Fuel Cell Material Handling Equipment Demonstration	
7	XII.1	Electricore, Inc.: Solid Oxide Fuel Cell Diesel Auxiliary Power Unit Demonstration.	XII-9
2	XII.2	Altergy Systems, Folsum: Demonstrating Economic and Operational Viability of 72-Hour Hydrogen PEM Fuel Cell Systems to Support Emergency Communications on the Sprint Nextel Network	.XII-12
Colo	rado		
I	I.A.2	National Renewable Energy Laboratory: Distributed Bio-Oil Reforming	II-15
I	II.D.3	National Renewable Energy Laboratory: Renewable Electrolysis Integrated Systems Development and Testing	II-39
I	I.D.3	Spectrum Automation Controls: Renewable Electrolysis Integrated Systems Development and Testing	
Ι	II.D.4	National Renewable Energy Laboratory: Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production.	
I	I.D.5	Proton OnSite: Low-Cost Large-Scale PEM Electrolysis for Renewable Energy Storage	II-46
I	I.E.3	University of Colorado: Solar Hydrogen Production with a Metal Oxide-Based Thermochemical Cycle	
I	I.E.4	University of Colorado: Solar-Thermal ALD Ferrite-Based Water Splitting Cycle	
I	I.F.2	National Renewable Energy Laboratory: Semiconductor Materials for Photoelectrolysis	
Ι	II.F.3	Lawrence Livermore National Laboratory: Characterization and Optimization of Photoelectrode Surfaces for Solar-to-Chemical Fuel Conversion	
I	I.F.5	MVSystems, Incorporated: Photoelectrochemical Hydrogen Production	
I	II.F.6	National Renewable Energy Laboratory: Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen	
I	I.G.1	National Renewable Energy Laboratory: Biological Systems for Hydrogen Photoproduction	. II-103
Ι	II.G.2	National Renewable Energy Laboratory: Fermentation and Electrohydrogenic Approaches to Hydrogen Production	
I	III.11	Engineering, Procurement & Construction: LLNL/Linde 875 bar Liquid Hydrogen Pump for High Density Cryogenic Vessel Refueling	
I	V.C.6	National Renewable Energy Laboratory: Weak Chemisorption Validation	. IV-89
I	V.C.11	National Renewable Energy Laboratory: Hydrogen Sorbent Measurement Qualification and Characterization	IV-109

Colora	do (Continued)	
IV.		.IV-114
IV.	D.2 National Renewable Energy Laboratory: System Design, Analysis, Modeling, and Media Engineering Properties for Hydrogen Energy Storage	.IV-119
IV.		
V.A	·	1, 23,
, , ,	Voltage Degradation	V-11
V.A	National Renewable Energy Laboratory: Enlarging the Potential Market for Stationary Fuel Cells Through System Design Optimization	V-47
V.B	National Renewable Energy Laboratory: Effect of System Contaminants on PEMFC Performance and Durability	V-57
V.B	3.1 Colorado School of Mines: Effect of System Contaminants on PEMFC Performance and Durability	V-57
V.D	National Renewable Energy Laboratory: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes	. V-107
V.D	National Renewable Energy Laboratory: Tungsten Oxide and Heteropoly Acid Based System for Ultra-High Activity and Stability of Pt Catalysts in PEM Fuel Cell Cathodes	. V-133
V.D	2.9 Colorado School of Mines: Tungsten Oxide and Heteropoly Acid Based System for Ultra-High Activity and Stability of Pt Catalysts in PEM Fuel Cell Cathodes	. V-133
V.D	University of Colorado, Boulder: Tungsten Oxide and Heteropoly Acid Based System for Ultra-High Activity and Stability of Pt Catalysts in PEM Fuel Cell Cathodes	. V-133
V.D	National Renewable Energy Laboratory: High Aspect Ratio Nano-Structured Pt-based PEM Fuel Cell Catalysts (EERE Post-Doc Fellowship)	. V-159
V.J.	.3 Versa Power Systems: Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual-Mode Operation with Low Degradation.	. V-281
V.K	Colorado School of Mines: Biomass Fuel Cell Systems	. V-305
VI.	National Renewable Energy Laboratory: Fuel Cell Membrane Electrode Assembly Manufacturing R&D	VI-7
VII	National Renewable Energy Laboratory: Controlled Hydrogen Fleet and Infrastructure Analysis	. VII-11
VII	National Renewable Energy Laboratory: Technology Validation: Fuel Cell Bus Evaluations	.VII-22
VII	National Renewable Energy Laboratory: Renewable Electrolysis Integrated System Development and Testing	VIII 40
VII	-	
VII		
VII		
VII	•	
VII		
VII	•	
VII		
VII		
VII		
X.3		
XI.		
XI.		
XI.		

Colorado (Continued)
XI.5	National Renewable Energy Laboratory: Infrastructure Costs Associated with Central Hydrogen Production from Biomass and Coal
XI.7	National Renewable Energy Laboratory: Effects of Technology Cost Parameters on Hydrogen Pathway Succession XI-35
XI.9	National Renewable Energy Laboratory: Resource Analysis for Hydrogen Production
XI.10	National Renewable Energy Laboratory: Cost, Energy Use, and Emissions of Tri-Generation Systems XI-47
XII.1	TDA Research, Inc.: Solid Oxide Fuel Cell Diesel Auxiliary Power Unit Demonstration
XII.3	National Renewable Energy Laboratory: Analysis Results for ARRA Projects: Enabling Fuel Cell Market Transformation
Connecticu	ıt.
II.D.2	Proton OnSite: High Performance, Low Cost Hydrogen Generation from Renewable Energy
II.H.2	Proton Energy Systems: Hydrogen by Wire - Home Fueling System
III.9	FuelCell Energy, Inc.: Electrochemical Hydrogen Compressor III-44
III.9	Sustainable Innovations, LLC: Electrochemical Hydrogen Compressor III-44
IV.D.1	United Technologies Research Center: Hydrogen Storage Engineering Center of Excellence
IV.D.6	United Technologies Research Center: Advancement of Systems Designs and Key Engineering Technologies for Materials-Based Hydrogen Storage
V.B.2	University of Connecticut: The Effect of Airborne Contaminants on Fuel Cell Performance and Durability
V.B.2	UTC Power: The Effect of Airborne Contaminants on Fuel Cell Performance and Durability
V.C.3	FuelCell Energy, Inc.: High-Temperature Membrane with Humidification-Independent Cluster Structure
V.D.2	UTC Power: Highly Dispersed Alloy Catalyst for Durability
V.E.1	United Technologies Research Center: Polymer Electrolyte Fuel Cell Lifetime Limitations: The Role of Electrocatalyst Degradation
V.E.4	UTC Power: Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data
V.E.4	United Technologies Research Center: Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data
V.F.2	United Technologies Research Center: Fuel Cell Fundamentals at Low and Subzero Temperatures V-211
V.J.6	UTC Power: 150 kW PEM Stationary Power Plant Operating on Natural Gas
V.K.4	University of Connecticut: Improving Reliability and Durability of Efficient and Clean Energy Systems
VI.2	UTC Power: Manufacturing of Low-Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning. VI-11
VII.2	FuelCell Energy, Inc.: Validation of an Integrated Hydrogen Energy Station
VIII.6	Kelvin Hecht: National Codes and Standards Coordination
VIII.6	GWS Solutions of Tolland, LLC: National Codes and Standards Coordination
VIII.10	GWS Solutions of Tolland, LLC: Hydrogen Safety Panel
IX.4	Connecticut Center for Advanced Technology, Inc.: State and Local Government Partnership IX-16
Delaware	
IV.A.7	Delaware State University: Hydrogen Storage Materials for Fuel Cell-Powered Vehicles
V.C.4	Ion Power Inc.: Corrugated Membrane Fuel Cell Structures
V.D.4	University of Delaware: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes V-107
V.E.2	Ion Power Inc.: Durability Improvements through Degradation Mechanism Studies
V.E.5	Ion Power Inc.: Accelerated Testing Validation

Delaware (C	Continued)
V.E.7	E. I. du Pont de Nemours and Company: Analysis of Durability of MEAs in Automotive PEMFC Applications
V.G.3	University of Delaware: Advanced Materials and Concepts for Portable Power Fuel Cells
VI.2	University of Delaware: Manufacturing of Low-Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning
Florida	
IV.H.19	Florida International University: Influence of Pressure on Physical Property of Ammonia Borane and its Re-Hydrogenation
V.C.1	University of Central Florida: Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program
V.G.2	University of North Florida: New MEA Materials for Improved Direct Methanol Fuel Cell (DMFC) Performance, Durability, and Cost
V.G.2	University of Florida: New MEA Materials for Improved Direct Methanol Fuel Cell (DMFC) Performance, Durability, and Cost
VII.6	University of Central Florida: Florida Hydrogen Initiative (FHI)
VII.6	EnerFuels, Inc.: Florida Hydrogen Initiative (FHI)
VII.6	Florida Atlantic University: Florida Hydrogen Initiative (FHI)
VII.6	Florida Solar Energy Center: Florida Hydrogen Initiative (FHI)
VII.6	SRT Group, Inc.: Florida Hydrogen Initiative (FHI)
VII.6	Electrolytic Technologies Corporation: Florida Hydrogen Initiative (FHI)
VII.6	Florida State University: Florida Hydrogen Initiative (FHI)
VII.6	Bing Energy, Inc.: Florida Hydrogen Initiative (FHI).
VII.6	Florida Institute of Technology: Florida Hydrogen Initiative (FHI)
VII.6	University of South Florida: Florida Hydrogen Initiative (FHI)
VIII.10	Addison Bain: Hydrogen Safety Panel
Georgia	
III.5	Savannah River National Laboratory: Fiber Reinforced Composite Pipeline
IV.A.6	Savannah River National Laboratory: Electrochemical Reversible Formation of Alane
IV.H.5	Savannah River National Laboratory: Elucidation of Hydrogen Interaction Mechanisms with Metal-Doped Carbon Nanostructures
V.E.6	Georgia Institute of Technology: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches
Hawaii	
II.F.5	University of Hawaii at Manoa: Photoelectrochemical Hydrogen Production
IV.A.2	University of Hawaii: Fundamental Studies of Advanced High-Capacity, Reversible Metal Hydrides IV-18
IV.B.4	Hawaii Hydrogen Carriers, LLC: Development of a Practical Hydrogen Storage System Based on Liquid Organic Hydrogen Carriers and a Homogeneous Catalyst
IV.C.6	University of Hawaii: Weak Chemisorption Validation
V.B.1	University of Hawaii: Effect of System Contaminants on PEMFC Performance and Durability
V.B.2	Hawaii Natural Energy Institute: The Effect of Airborne Contaminants on Fuel Cell Performance and Durability
VII.5	Hawaii Natural Energy Institute: Hawaii Hydrogen Power Park
X 1	Hawaii Natural Energy Institute: Hydrogen Energy Systems as a Grid Management Tool. X-7

Illinois	
II.B.1	Gas Technology Institute: One Step Biomass Gas Reforming-Shift Separation Membrane Reactor II-19
II.E.2	Argonne National Laboratory: Membrane/Electrolyzer Development in the Cu-Cl Thermochemical
	CycleII-56
II.E.2	Gas Technology Institute: Membrane/Electrolyzer Development in the Cu-Cl Thermochemical Cycle II-56
III.2	Argonne National Laboratory: Hydrogen Delivery Infrastructure Analysis
IV.A.1	Northwestern University: Efficient Discovery of Novel Multicomponent Mixtures for Hydrogen Storage: A Combined Computational/Experimental Approach
IV.A.4	University of Illinois at Urbana-Champaign: Reversible Hydrogen Storage Materials - Structure, Chemistry, and Electronic Structure
IV.C.4	Northwestern University: New Carbon-Based Porous Materials with Increased Heats of Adsorption for Hydrogen Storage
IV.C.10	Northwestern University: Metal- and Cluster-Modified Ultrahigh-Area Materials for the Ambient Temperature Storage of Molecular Hydrogen
IV.E.1	Argonne National Laboratory: System Level Analysis of Hydrogen Storage Options
IV.H.7	Argonne National Laboratory: New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces
IV.H.13	Northwestern University: Theory of Hydrogen Storage in Complex Hydrides
V.A.4	Argonne National Laboratory: Performance of Automotive Fuel Cell Systems with Low-Pt Nanostructured Thin Film Catalysts at High Power Densities
V.D.1	Argonne National Laboratory: Advanced Cathode Catalysts and Supports for PEM Fuel Cells
V.D.5	Argonne National Laboratory: Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading V-111
V.D.10	Illinois Institute of Technology: Synthesis and Characterization of Mixed-Conducting Corrosion Resistant Oxide Supports
V.E.1	Argonne National Laboratory: Polymer Electrolyte Fuel Cell Lifetime Limitations: The Role of Electrocatalyst Degradation
V.E.2	Argonne National Laboratory: Durability Improvements through Degradation Mechanism Studies V-175
V.E.3	Argonne National Laboratory: Durability of Low Platinum Fuel Cells Operating at High Power Density V-182
V.E.7	Illinois Institute of Technology: Analysis of Durability of MEAs in Automotive PEMFC Applications V-201
V.G.1	Illinois Institute of Technology: Novel Materials for High Efficiency Direct Methanol Fuel Cells V-242
V.H.1	Gas Technology Institute: Low-Cost PEM Fuel Cell Metal Bipolar Plates
XI.2	Argonne National Laboratory: Life-Cycle Analysis of Vehicle and Fuel Systems with the GREET Model XI-15
XI.11	Argonne National Laboratory: Employment Impacts of Early Markets for Hydrogen and Fuel Cell Technologies. XI-52
XI.11	RCF Economic and Financial Consulting, Inc.: Employment Impacts of Early Markets for Hydrogen and Fuel Cell Technologies
Iowa	
IV.H.11	Ames Laboratory: Complex Hydrides - A New Frontier for Future Energy Applications
Kansas	
XII.2	Black & Veatch Corporation: Demonstrating Economic and Operational Viability of 72-Hour Hydrogen PEM Fuel Cell Systems to Support Emergency Communications on the Sprint
	Nextel Network
XII.2	Ericsson Services, Inc.: Demonstrating Economic and Operational Viability of 72-Hour Hydrogen PEM Fuel Cell Systems to Support Emergency Communications on the Sprint Nextel Network XII-12

Maryland		
II.G.1	Johns Hopkins University: Biological Systems for Hydrogen Photoproduction	II-103
IV.C.8	National Institute of Standards and Technology: Hydrogen Storage in Metal-Organic Frameworks	IV-97
IV.E.3	National Institute of Standards and Technology: Neutron Characterization in Support of the DOE Hydrogen Storage Sub-Program.	IV-176
V.A.6	National Institute of Standards and Technology: Neutron Imaging Study of the Water Transport in Operating Fuel Cells	V-37
V.I.1	W. L. Gore & Associates, Inc.: Materials and Modules for Low-Cost, High-Performance Fuel Cell Humidifiers.	V-261
VI.2	W. L. Gore & Associates, Inc.: Manufacturing of Low-Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning	
VI.4	National Institute of Standards and Technology: Non-Contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks	
VI.7	National Institute of Standards and Technology: Cause and Effect: Flow Field Plate Manufacturing Variability and its Impact on Performance	
VI.8	National Institute of Standards and Technology: Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM (Fuel Cell) Soft Goods	
VII.7	General Physics Corporation: Sustainable Hydrogen Fueling Station, California State University, Los Angeles	
VIII.10	Energetics, Inc.: Hydrogen Safety Panel	
Massachus	etts	
II.D.1	Giner Electrochemical Systems, LLC: PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane	II-31
II.H.1	Giner Electrochemical Systems, LLC: Unitized Design for Home Refueling Appliance for Hydrogen Generation to 5,000 psi	II-122
III.7	Concepts NREC: Development of a Centrifugal Hydrogen Pipeline Gas Compressor	
V.C.2	Giner Electrochemical Systems, LLC: Dimensionally Stable High Performance Membrane (SBIR Phase III).	V-71
V.D.6	Massachusetts Institute of Technology: Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability Low-Cost Supports.	V-117
V.D.11	Northeastern University: Development of Novel Non-PGM Electrocatalysts for Proton Exchange Membrane Fuel Cell Applications	
V.D.12	Massachusetts Institute of Technology: High-Activity Dealloyed Catalysts	V-149
V.D.12	Northeastern University: High-Activity Dealloyed Catalysts	V-149
V.E.1	Massachusetts Institute of Technology: Polymer Electrolyte Fuel Cell Lifetime Limitations: The Role of Electrocatalyst Degradation.	V-168
V.E.3	Nuvera Fuel Cells, Inc.: Durability of Low Platinum Fuel Cells Operating at High Power Density	V-182
V.F.4	Nuvera Fuel Cells, Inc.: Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks	V-222
V.F.6	Giner Electrochemical Systems, LLC: Transport in PEMFC Stacks	V-230
V.F.6	Tech-Etch: Transport in PEMFC Stacks	
V.F.6	Ballard Material Products, Inc.: Transport in PEMFC Stacks	V-230
V.G.2	Northeastern University: New MEA Materials for Improved Direct Methanol Fuel Cell (DMFC) Performance, Durability, and Cost.	
V.H.1	IBIS Associates, Inc.: Low-Cost PEM Fuel Cell Metal Bipolar Plates	
V.I.2	Protonex Inc.: Large Scale Testing, Demonstration and Commercialization of the Nanoparticle-Based Fuel Cell Coolant (SBIR Phase III)	

Massachuse	etts (Continued)
V.J.2	Acumentrics Corporation: Development of a Low-Cost 3-10 kW Tubular SOFC Power System
VIII.10	Firexplo: Hydrogen Safety Panel
XI.3	IDC Energy Insights: Hydrogen Refueling Infrastructure Cost Analysis
XI.4	TIAX, LLC: Comparing Infrastructure Costs for Hydrogen and Electricity
Michigan	
III.3	University of Michigan: Vessel Design and Fabrication Technology for Stationary High-Pressure Hydrogen Storage
IV.C.8	General Motors Company: Hydrogen Storage in Metal-Organic Frameworks
IV.D.1	General Motors Company: Hydrogen Storage Engineering Center of Excellence
IV.D.1	Ford Motor Company: Hydrogen Storage Engineering Center of Excellence
IV.D.1	University of Michigan: Hydrogen Storage Engineering Center of Excellence
IV.D.7	General Motors Company: Thermal Management of Onboard Cryogenic Hydrogen Storage Systems IV-147
IV.D.8	Ford Motor Company: Ford/BASF SE/UM Activities in Support of the Hydrogen Storage
	Engineering Center of Excellence
IV.D.8	University of Michigan: Ford/BASF SE/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence
V.C.4	General Motors Company: Corrugated Membrane Fuel Cell Structures
V.D.10	Nissan Technical Center: Synthesis and Characterization of Mixed-Conducting Corrosion Resistant Oxide Supports
V.D.11	Michigan State University: Development of Novel Non-PGM Electrocatalysts for Proton Exchange Membrane Fuel Cell Applications
V.D.11	Nissan Technical Center: Development of Novel Non-PGM Electrocatalysts for Proton Exchange Membrane Fuel Cell Applications
V.D.12	General Motors Company: High-Activity Dealloyed Catalysts
V.E.6	Michigan Technological University: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches
V.E.7	Nissan Technical Center: Analysis of Durability of MEAs in Automotive PEMFC Applications V-201
V.H.1	Ford Motor Company: Low-Cost PEM Fuel Cell Metal Bipolar Plates
VIII.3	SAE International: Component Standard Research and Development
VIII.6	Sloane Solutions: National Codes and Standards Coordination
VIII.10	General Motors Company: Hydrogen Safety Panel
XII.1	Delphi Automotive Systems, LLC: Solid Oxide Fuel Cell Diesel Auxiliary Power Unit Demonstration XII-9
Minnesota	
II.A.2	University of Minnesota: Distributed Bio-Oil Reforming
II.D.2	Entegris, Inc.: High Performance, Low Cost Hydrogen Generation from Renewable Energy II-35
II.D.5	3M Company: Low-Cost Large-Scale PEM Electrolysis for Renewable Energy Storage
V.D.1	3M Company: Advanced Cathode Catalysts and Supports for PEM Fuel Cells
V.D.3	3M Company: Durable Catalysts for Fuel Cell Protection during Transient Conditions
V.D.5	3M Company: Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading V-111
V.F.2	3M Company: Fuel Cell Fundamentals at Low and Subzero Temperatures
V.J.5	The Toro Company: Research and Development for Off-Road Fuel Cell Applications
Mississippi	
V.K.2	University of Southern Mississippi: Alternative Fuel Cell Membranes for Energy Independence V-300

Missouri	
IV.C.3	University of Missouri: Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage
IV.C.3	Midwest Research Institute: Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage
IV.H.15	Washington University: In Situ NMR Studies of Hydrogen Storage Systems
IV.H.7	University of Missouri: New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces
VIII.10	Becht Engineering: Hydrogen Safety Panel
XII.2	Burns & McDonnell Engineering Co., Inc.: Demonstrating Economic and Operational Viability of 72-Hour Hydrogen PEM Fuel Cell Systems to Support Emergency Communications on the Sprint Nextel Network
Nebraska	
III.6	Lincoln Composites, Inc.: Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery
IV.D.1	Lincoln Composites, Inc.: Hydrogen Storage Engineering Center of Excellence
IV.D.10	Lincoln Composites, Inc.: Development of Improved Composite Pressure Vessels for Hydrogen Storage
Nevada	
II.F.2	University of Nevada, Las Vegas: Semiconductor Materials for Photoelectrolysis
II.F.4	University of Nevada, Las Vegas: Characterization of Materials for Photoelectrochemical (PEC) Hydrogen Production
IV.G.1	University of Nevada, Las Vegas: HGMS: Glasses and Nanocomposites for Hydrogen Storage IV-208
New Jersey	
IV.C.5	Rutgers University: Hydrogen Trapping through Designer Hydrogen Spillover Molecules with Reversible Temperature and Pressure-Induced Switching
IV.H.2	Rutgers University: Novel theoretical and experimental approaches for understanding and optimizing hydrogen-sorbent interactions in metal organic framework materials
V.D.11	BASF Fuel Cell: Development of Novel Non-PGM Electrocatalysts for Proton Exchange Membrane Fuel Cell Applications
V.H.1	TreadStone Technologies, Inc.: Low-Cost PEM Fuel Cell Metal Bipolar Plates
VI.5	BASF Fuel Cell: High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies
XII.6	Linde North America: GENCO Fuel Cell-Powered Lift Truck Fleet Deployment
New Mexic	0
IV.B.2	Los Alamos National Laboratory: Fluid Phase Chemical Hydrogen Storage Materials
IV.C.6	University of New Mexico: Weak Chemisorption Validation
IV.D.1	Los Alamos National Laboratory: Hydrogen Storage Engineering Center of Excellence
IV.D.3	Los Alamos National Laboratory: Chemical Hydride Rate Modeling, Validation, and System Demonstration
V.A.7	Los Alamos National Laboratory: Technical Assistance to Developers
V.B.1	Los Alamos National Laboratory: Effect of System Contaminants on PEMFC Performance and Durability
V.D.4	Los Alamos National Laboratory: Extended, Continuous Pt Nanostructures in Thick, Dispersed V-107

New Mexico	(Continued)
V.D.7	Los Alamos National Laboratory: The Science and Engineering of Durable Ultralow PGM Catalysts V-121
V.D.7	University of New Mexico: The Science and Engineering of Durable Ultralow PGM Catalysts V-121
V.D.11	University of New Mexico: Development of Novel Non-PGM Electrocatalysts for Proton Exchange Membrane Fuel Cell Applications
V.D.11	Los Alamos National Laboratory: Development of Novel Non-PGM Electrocatalysts for Proton Exchange Membrane Fuel Cell Applications
V.E.2	Los Alamos National Laboratory: Durability Improvements through Degradation Mechanism Studies V-175
V.E.2	University of New Mexico: Durability Improvements through Degradation Mechanism Studies V-175
V.E.3	Los Alamos National Laboratory: Durability of Low Platinum Fuel Cells Operating at High Power Density
V.E.4	Los Alamos National Laboratory: Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data V-186
V.E.5	Los Alamos National Laboratory: Accelerated Testing Validation
V.E.6	Los Alamos National Laboratory: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches
V.E.6	University of New Mexico: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches
V.F.2	Los Alamos National Laboratory: Fuel Cell Fundamentals at Low and Subzero Temperatures
V.F.3	Los Alamos National Laboratory: Development and Validation of a Two-Phase, Three-Dimensional Model for PEM Fuel Cells
V.G.3	Los Alamos National Laboratory: Advanced Materials and Concepts for Portable Power Fuel Cells V-250
VI.7	Los Alamos National Laboratory: Cause and Effect: Flow Field Plate Manufacturing Variability and its Impact on Performance
VIII.8	Los Alamos National Laboratory: Leak Detection and H2 Sensor Development for Hydrogen Applications
VIII.9	Los Alamos National Laboratory: Hydrogen Fuel Quality Research and Development
XI.1	Los Alamos National Laboratory: Infrastructure Analysis of Early Market Transition of Fuel Cell Vehicles. XI-11
New York	
II.C.2	H2Pump, LLC: Process Intensification of Hydrogen Unit Operations Using an Electrochemical Device II-28
II.E.1	Electrosynthesis Co. Inc.: Solar High-Temperature Water Splitting Cycle with Quantum Boost II-49
III.8	Mohawk Innovative Technologies, Inc.: Oil-Free Centrifugal Hydrogen Compression Technology Demonstration
IV.A.5	Brookhaven National Laboratory: Aluminum Hydride
IV.H.12	Brookhaven National Laboratory: Atomistic Transport Mechanisms in Aluminum-Based Hydrides IV-249
V.B.1	General Motors Company: Effect of System Contaminants on PEMFC Performance and Durability V-57
V.D.1	General Motors Company: Advanced Cathode Catalysts and Supports for PEM Fuel Cells
V.D.2	Brookhaven National Laboratory: Highly Dispersed Alloy Catalyst for Durability
V.D.4	State University of New York, Albany: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes
V.D.6	Brookhaven National Laboratory: Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability Low-Cost Supports
V.F.1	Plug Power Inc.: Air-Cooled Stack Freeze Tolerance
V.F.7	General Motors Company: Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance
V.F.7	Rochester Institute of Technology: Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance

New	York ((Continued)	
7	V.F.7	University of Rochester: Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance	V-235
7	V.G.3	Brookhaven National Laboratory: Advanced Materials and Concepts for Portable Power Fuel Cells	V-250
7	V.H.1	State University of New York, Stony Brook: Low-Cost PEM Fuel Cell Metal Bipolar Plates	V-257
7	VI.3	Rensselaer Polytechnic Institute: Adaptive Process Controls and Ultrasonics for High-Temperature PEM MEA Manufacture	VI-17
2	XII.4	Plug Power Inc.: Fuel Cell-Powered Lift Truck FedEx Freight Fleet Deployment	XII-21
2	XII.5	Plug Power Inc.: Fuel Cell-Powered Lift Truck Sysco Houston Fleet Deployment	XII-24
2	XII.6	Plug Power Inc.: GENCO Fuel Cell-Powered Lift Truck Fleet Deployment	XII-28
2	XII.7	Plug Power Inc.: Highly Efficient, 5-kW CHP Fuel Cells Demonstrating Durability and Economic Value in Residential and Light Commercial Applications	XII-30
2	XII.8	Plug Power Inc.: Accelerating Acceptance of Fuel Cell Backup Power Systems	XII-34
Nort	h Caro	lino	
	n Caro IV.H.2	Wake Forest University: Novel theoretical and experimental approaches for understanding and	
1	V.H.2	optimizing hydrogen-sorbent interactions in metal organic framework materials	IV-213
7	V.C.1	Scribner Associates, Inc.: Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program	
7	V.F.5	Techverse: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization	V-226
Ohio			
	II.F.6	Midwest Optoelectronics, LLC: Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen	. II-93
Ι	II.F.6	Xunlight Corporation: Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen	. II-93
Ι	II.F.6	University of Toledo: Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen	. II-93
I	V.A.3	Ohio State University: Lightweight Metal Hydrides for Hydrogen Storage	IV-22
7	V.A.9	Battelle: Stationery and Emerging Market Fuel Cell System Cost Analysis	. V-51
7	V.C.4	Graftech International Holdings Inc.: Corrugated Membrane Fuel Cell Structures	. V-80
V	V.K.1	University of Akron: Development of Kilowatt-Scale Coal Fuel Cell Technology	V-295
7	VI.5	Case Western Reserve University: High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies	
V	VII.3	Battelle: Technology Validation: Fuel Cell Bus Evaluations	VII-22
7	VIII.6	CSA Standards: National Codes and Standards Coordination	/III-28
7	VIII.10	Powdermet Inc.: Hydrogen Safety Panel	/III-45
I	X.2	Ohio Fuel Cell Coalition: Raising H2 and Fuel Cell Awareness in Ohio	
I	X.2	Edison Material Technology Center: Raising H2 and Fuel Cell Awareness in Ohio	.IX-11
Ожая			
Oreg		ATI Wah Chang: One Stan Diamoss Gas Reforming Shift Sangration Mambrana Regator	II 10
	I.B.1 IV.B.1	ATI Wah Chang: One Step Biomass Gas Reforming-Shift Separation Membrane Reactor	
	V.B.1	University of Oregon: Novel Carbon(C)-Boron(B)-Nitrogen(N)-Containing H2 Storage Materials	
	V.D.1	Oregon State University: Hydrogen Storage Engineering Center of Excellence	
	V.D.1 V.D.9	Oregon State University: Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy	1 V-114
1	v.D.7	Storage	IV-156

Oregon (Co	ntinued)
V.J.5	IdaTech, LLC: Research and Development for Off-Road Fuel Cell Applications
X.2	ClearEdge Power: Fuel Cell Combined Heat and Power Industrial Demonstration
XII.7	ClearEdge Power: Highly Efficient, 5-kW CHP Fuel Cells Demonstrating Durability and Economic
	Value in Residential and Light Commercial Applications
XII.8	IdaTech, LLC: Accelerating Acceptance of Fuel Cell Backup Power Systems
Pennsylvan	ia en la companya de
II.B.1	National Energy Technology Laboratory: One Step Biomass Gas Reforming-Shift Separation Membrane Reactor
II.B.1	Schott North America: One Step Biomass Gas Reforming-Shift Separation Membrane Reactor II-19
II.C.1	Media and Process Technology Inc.: Development of Hydrogen Selective Membranes/Modules as Reactors/Separators for Distributed Hydrogen Production
II.D.2	Pennsylvania State University: High Performance, Low Cost Hydrogen Generation from Renewable Energy
II.E.2	Pennsylvania State University: Membrane/Electrolyzer Development in the Cu-Cl Thermochemical Cycle
II.E.3	Bucknell University: Solar Hydrogen Production with a Metal Oxide-Based Thermochemical Cycle II-60
II.G.2	Pennsylvania State University: Fermentation and Electrohydrogenic Approaches to Hydrogen Production
IV.C.5	Pennsylvania State University: Hydrogen Trapping through Designer Hydrogen Spillover Molecules with Reversible Temperature and Pressure-Induced Switching
IV.H.1	University of Pennsylvania: From Fundamental Understanding to Predicting New Nanomaterials for High-Capacity Hydrogen Storage
IV.H.10	Pennsylvania State University: Exploration of Novel Carbon-Hydrogen Interactions
IV.H.18	University of Pennsylvania: Mechanistic Studies of Activated Hydrogen Release from Ammonia-Borane
V.D.5	University of Pittsburgh: Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading V-111
V.F.2	Pennsylvania State University: Fuel Cell Fundamentals at Low and Subzero Temperatures
V.F.3	Pennsylvania State University: Development and Validation of a Two-Phase, Three-Dimensional Model for PEM Fuel Cells
V.F.4	Pennsylvania State University: Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks
V.F.7	Pennsylvania State University: Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance
V.G.1	Arkema Inc.: Novel Materials for High Efficiency Direct Methanol Fuel Cells
V.I.2	Dynalene Inc.: Large Scale Testing, Demonstration and Commercialization of the Nanoparticle-Based Fuel Cell Coolant (SBIR Phase III)
VII.2	Air Products and Chemicals, Inc.: Validation of an Integrated Hydrogen Energy StationVII-18
VII.4	Air Products and Chemicals, Inc.: California Hydrogen Infrastructure Project
VIII.6	SAE International: National Codes and Standards Coordination
VIII.10	Air Products and Chemicals, Inc.: Hydrogen Safety Panel
XII.2	Air Products and Chemicals, Inc.: Demonstrating Economic and Operational Viability of 72-Hour Hydrogen PEM Fuel Cell Systems to Support Emergency Communications on the Sprint Nextel Network
XII.4	Air Products and Chemicals, Inc.: Fuel Cell-Powered Lift Truck FedEx Freight Fleet DeploymentXII-21
XII.5	Air Products and Chemicals, Inc.: Fuel Cell-Powered Lift Truck Sysco Houston Fleet Deployment XII-24
XII.6	GENCO Infrastructure Solutions: GENCO Fuel Cell-Powered Lift Truck Fleet DeploymentXII-28

Pennsylvar	nia (Continued)	
XII.6	Air Products and Chemicals, Inc.: GENCO Fuel Cell-Powered Lift Truck Fleet Deployment	XII-28
Rhode Isla	nd	
V.D.5	Brown University: Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading	V-111
South Card	olina	
II.C.2	PBI Performance Products, Inc.: Process Intensification of Hydrogen Unit Operations Using an Electrochemical Device.	II-28
IV.D.1	Savannah River National Laboratory: Hydrogen Storage Engineering Center of Excellence	IV-114
V.B.1	University of South Carolina: Effect of System Contaminants on PEMFC Performance and Durability	V-57
V.D.13	University of South Carolina: Development of Ultra-Low Platinum Alloy Cathode Catalyst for PEM Fuel Cells.	V-153
V.F.6	University of South Carolina: Transport in PEMFC Stacks	
V.I.3	Tetramer Technologies, LLC: New High Performance Water Vapor Membranes to Improve Fuel Cell Balance of Plant Efficiency and Lower Costs (SBIR Phase I)	
IX.1	South Carolina Hydrogen and Fuel Cell Alliance: Development of Hydrogen Education Programs for Government Officials	
IX.1	Greenway Energy: Development of Hydrogen Education Programs for Government Officials	
IX.1	Advanced Technology International: Development of Hydrogen Education Programs for Government Officials	IX-7
X.4	South Carolina Hydrogen and Fuel Cell Alliance: Landfill Gas-to-Hydrogen	
X.4	Advanced Technology International: Landfill Gas-to-Hydrogen	
Tennessee		
II.D.2	Oak Ridge National Laboratory: High Performance, Low Cost Hydrogen Generation from Renewable Energy	II-35
III.3	Oak Ridge National Laboratory: Vessel Design and Fabrication Technology for Stationary High-Pressure Hydrogen Storage.	
III.10	Oak Ridge National Laboratory: Composite Technology for Hydrogen Pipelines	
IV.C.9	Oak Ridge National Laboratory: The Quantum Effects of Pore Structure on Hydrogen Adsorption	
IV.F.1	Oak Ridge National Laboratory: High Strength Carbon Fibers	IV-191
IV.F.2	Oak Ridge National Laboratory: Lifecycle Verification of Polymeric Storage Tank Liners	. IV-197
IV.F.3	Oak Ridge National Laboratory: Development of Low-Cost, High Strength Commercial Textile Precursor (PAN-MA)	. IV-200
IV.H.4	Oak Ridge National Laboratory: Atomistic Mechanisms of Metal-Assisted Hydrogen Storage in Nanostructured Carbons	. IV-220
IV.H.7	Oak Ridge National Laboratory: New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces	. IV-233
V.A.5	Oak Ridge National Laboratory: Characterization of Fuel Cell Materials	V-32
V.D.3	Oak Ridge National Laboratory: Durable Catalysts for Fuel Cell Protection during Transient Conditions	V-100
V.D.4	Oak Ridge National Laboratory: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes.	
V.D.4	University of Tennessee: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes	
V.D.5	Oak Ridge National Laboratory: Nanosegregated Cathode Catalysts with Ultra-Low Platinum	V-111

Tennessee (Continued)
V.D.11	University of Tennessee: Development of Novel Non-PGM Electrocatalysts for Proton Exchange Membrane Fuel Cell Applications
V.E.2	Oak Ridge National Laboratory: Durability Improvements through Degradation Mechanism Studies V-175
V.E.4	Oak Ridge National Laboratory: Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data V-186
V.E.5	Oak Ridge National Laboratory: Accelerated Testing Validation
V.F.7	University of Tennessee: Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance
V.G.3	Oak Ridge National Laboratory: Advanced Materials and Concepts for Portable Power Fuel Cells V-250
V.I.2	University of Tennessee, Knoxville: Large Scale Testing, Demonstration and Commercialization of the Nanoparticle-Based Fuel Cell Coolant (SBIR Phase III)
VI.2	University of Tennessee: Manufacturing of Low-Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning
XI.6	Oak Ridge National Laboratory: Sensitivity Analysis of H2-Vehicles' Market Prospects, Costs and Benefits
XI.6	University of Tennessee, Knoxville: Sensitivity Analysis of H2-Vehicles' Market Prospects, Costs and Benefits
XI.8	Oak Ridge National Laboratory: Impact of DOE Program Goals on Hydrogen Vehicles: Market Prospect, Costs, and Benefits. XI-39
Texas	
II.F.7	University of Texas at Arlington: Photoelectrochemical Materials: Theory and Modeling
III.7	Texas A&M University: Development of a Centrifugal Hydrogen Pipeline Gas Compressor III-35
IV.C.1	Texas A&M University: A Biomimetic Approach to Metal-Organic Frameworks with High H2 Uptake
IV.H.2	University of Texas, Dallas: Novel theoretical and experimental approaches for understanding and optimizing hydrogen-sorbent interactions in metal organic framework materials
IV.H.12	University of Texas, Dallas: Atomistic Transport Mechanisms in Aluminum-Based Hydrides IV-249
V.D.2	Texas A&M University: Highly Dispersed Alloy Catalyst for Durability
V.D.4	University of Texas at Austin: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes V-107
V.E.1	University of Texas at Austin: Polymer Electrolyte Fuel Cell Lifetime Limitations: The Role of Electrocatalyst Degradation
V.F.5	BCS Fuel Cells: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization
VIII.10	William C. Fort: Hydrogen Safety Panel
XII.5	Sysco of Houston: Fuel Cell-Powered Lift Truck Sysco Houston Fleet Deployment
Utah	
III.3	MegaStir Technologies: Vessel Design and Fabrication Technology for Stationary High-Pressure Hydrogen Storage
XII.5	Big-D Construction: Fuel Cell-Powered Lift Truck Sysco Houston Fleet Deployment
Virginia	
II.D.1	Virginia Polytechnic Institute and State University: PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane
IV.E.4	Strategic Analysis, Inc.: Hydrogen Storage Cost Analysis, Preliminary Results
IV.F.1	Virginia Polytechnic Institute and State University: High Strength Carbon Fibers
IV.H.3	Virginia Commonwealth University: Design and Synthesis of Chemically and Electronically Tunable Nanoporous Organic Polymers for Use in Hydrogen Storage Applications

Virginia (Continued)
V.A.2	Strategic Analysis, Inc.: Mass-Production Cost Estimation for Automotive Fuel Cell Systems
V.A.3	Strategic Analysis, Inc.: Stationary Fuel Cell System Cost Analysis
V.F.6	Virginia Polytechnic Institute and State University: Transport in PEMFC Stacks
V.G.3	Virginia Polytechnic Institute and State University: Advanced Materials and Concepts for Portable Power Fuel Cells
XI.7	Strategic Analysis, Inc.: Effects of Technology Cost Parameters on Hydrogen Pathway Succession XI-35
XII.2	Sprint Nextel: Demonstrating Economic and Operational Viability of 72-Hour Hydrogen PEM Fuel Cell Systems to Support Emergency Communications on the Sprint Nextel Network
Washingt	on
II.A.1	Pacific Northwest National Laboratory: Biomass-Derived Liquids Distributed (Aqueous Phase) Reforming
III.3	Global Engineering and Technology: Vessel Design and Fabrication Technology for Stationary High-Pressure Hydrogen Storage
IV.D.	Pacific Northwest National Laboratory: Hydrogen Storage Engineering Center of Excellence
IV.D.	Pacific Northwest National Laboratory: Systems Engineering of Chemical Hydride, Pressure Vessel, and Balance of Plant for Onboard Hydrogen Storage
IV.E.:	Pacific Northwest National Laboratory: Early Market TRL/MRL Analysis
IV.F.4	Pacific Northwest National Laboratory: Synergistically Enhanced Materials and Design Parameters for Reducing the Cost of Hydrogen Storage Tanks
IV.H.	6 Pacific Northwest National Laboratory: Activation of Hydrogen with Bi-Functional Ambiphillic Catalyst Complexes
V.D.1	Pacific Northwest National Laboratory: Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells
V.J.4	InnovaTek: Power Generation from an Integrated Biomass Reformer and Solid Oxide Fuel Cell (SBIR Phase III)
VI.6	Boeing Research and Technology: Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels
VI.6	Pacific Northwest National Laboratory: Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels
VIII.1	0 Pacific Northwest National Laboratory: Hydrogen Safety Panel
VIII.1	1 Pacific Northwest National Laboratory: Hydrogen Safety Knowledge Tools
VIII.1	2 Pacific Northwest National Laboratory: Hydrogen Emergency Response Training for First Responders
VIII.1	2 Hanford Fire Department: Hydrogen Emergency Response Training for First Responders
VIII.1	2 Hazardous Materials Management and Emergency Response Training and Eduction Center: Hydrogen Emergency Response Training for First Responders
X.2	Pacific Northwest National Laboratory: Fuel Cell Combined Heat and Power Industrial Demonstration X-10
XII.1	PACCAR, Inc.: Solid Oxide Fuel Cell Diesel Auxiliary Power Unit Demonstration
XII.2	ReliOn, Inc.: Demonstrating Economic and Operational Viability of 72-Hour Hydrogen PEM Fuel Cell Systems to Support Emergency Communications on the Sprint Nextel Network
XII.3	Pacific Northwest National Laboratory: Analysis Results for ARRA Projects: Enabling Fuel Cell Market Transformation
Washingt	on D.C.
IV.H.	
тv.п. V.D.1	
v.D.1	2. George washington Oniversity. Tright-Activity Deanloyed Catalysis

Wisconsin	
V.E.1	University of Wisconsin, Madison: Polymer Electrolyte Fuel Cell Lifetime Limitations: The Role of Electrocatalyst Degradation
Wyoming	
II.D.5	University of Wyoming: Low-Cost Large-Scale PEM Electrolysis for Renewable Energy Storage II-4
Foreign C	countries
Canada	
IV.D.1	Université du Québec à Trois-Rivières: Hydrogen Storage Engineering Center of Excellence
IV.H.18	University of Ottawa: Mechanistic Studies of Activated Hydrogen Release from Ammonia-Borane IV-27
V.A.10	Ballard Power Systems: A Total Cost of Ownership Model for Design and Manufacturing Optimization of Fuel Cells in Stationary and Emerging Market Applications
V.B.2	Ballard Power Systems: The Effect of Airborne Contaminants on Fuel Cell Performance and Durability V-6
V.D.1	Dalhousie University: Advanced Cathode Catalysts and Supports for PEM Fuel Cells
V.D.3	Dalhousie University: Durable Catalysts for Fuel Cell Protection during Transient Conditions
V.D.3	Automotive Fuel Cell Cooperation: Durable Catalysts for Fuel Cell Protection during Transient Conditions
V.D.7	Ballard Fuel Cells: The Science and Engineering of Durable Ultralow PGM Catalysts V-12
V.D.15	Automotive Fuel Cell Cooperation: Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells
V.E.2	Ballard Power Systems: Durability Improvements through Degradation Mechanism Studies
V.E.5	Ballard Power Systems: Accelerated Testing Validation. V-19
V.E.6	Ballard Power Systems: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches
V.E.6	Queen's University: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches
V.F.1	Ballard Power Systems: Air-Cooled Stack Freeze Tolerance
V.F.3	Ballard Power Systems: Development and Validation of a Two-Phase, Three-Dimensional Model for PEM Fuel Cells
V.F.5	Ballard Power Systems: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization
V.F.5	University of Victoria: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization
V.I.1	dPoint Technologies, Inc.: Materials and Modules for Low-Cost, High-Performance Fuel Cell Humidifiers
France	
IV.C.6	Institut de Chimie et des Matériaux: Weak Chemisorption Validation
IV.H.7	Univiversity Aix-Marseille: New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces. IV-23:
IV.H.7	University Montpellier 2: New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces
Germany	
IV.C.6	Max Planck Institute: Weak Chemisorption Validation
IV.D.8	BASF-SE: Ford/BASF SE/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence
	UI L'ACCITETICE

Germany (Continued)	
V.D.12	Technical University Berlin: High-Activity Dealloyed Catalysts	. V-149
V.F.5	SGL Carbon: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing,	
	and Design Optimization	
V.G.3	SFC Energy: Advanced Materials and Concepts for Portable Power Fuel Cells	. V-250
Japan		
III.8	Mitsubishi Compressor Company: Oil-Free Centrifugal Hydrogen Compression Technology Demonstration	. III-40
Portugal		
IV.F.1	Fibras Sinteticas de Portugal, SA: High Strength Carbon Fibers	.IV-191
Russia		
II.G.1	Institute of Basic Biological Problems: Biological Systems for Hydrogen Photoproduction	. II-103
South Kore	ea ea	
V.D.13	Yonsei University: Development of Ultra-Low Platinum Alloy Cathode Catalyst for PEM Fuel Cells	. V-153
United Kin	gdom	
II.D.1	Parker Hannifin Ltd domnick hunter Division: PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane	II-31
V.D.2	Johnson Matthey Fuel Cells: Highly Dispersed Alloy Catalyst for Durability	
V.D.6	Johnson Matthey Fuel Cells: Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability Low-Cost Supports	V-117
V.D.12	Johnson Matthey Fuel Cells: High-Activity Dealloyed Catalysts.	
V.E.1	Johnson Matthey Fuel Cells: Polymer Electrolyte Fuel Cell Lifetime Limitations: The Role of Electrocatalyst Degradation.	
V.F.4	Johnson Matthey Fuel Cells: Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks	
V.G.2	Johnson Matthey Fuel Cells: New MEA Materials for Improved Direct Methanol Fuel Cell (DMFC) Performance, Durability, and Cost.	
VG 3	Johnson Matthey Fuel Cells: Advanced Materials and Concents for Portable Power Fuel Cells	