XV. Project Listings by State

Alabama		
IV.E.1	University of Alabama: Novel Carbon(C)-Boron(B)-Nitrogen(N)-Containing H2 Storage Materials	IV-105
IV.F.3	Toray Composites America: Synergistically Enhanced Materials and Design Parameters for Reducing the Cost of Hydrogen Storage Tanks	IV-131
Arizona		
II.G.1	University of Arizona: Semiconductor Nanorod/Metal(Metal Oxide) Hybrid Materials: Characterization of Frontier Orbital Energies and Charge Injection Processes Using Unique Combinations of Photoemission Spectroscopies and Waveguide Spectroelectrochemistrie	
II.G.5	Arizona State: Electrochemical Characterization of the Oxygen-Tolerant Soluble Hydrogenase I from Pyrococcus furiosus.	
II.G.13	University of Arizona: Center for Interface Science: Solar-Electric Materials (CISSEM)	II-123
II.G.16	Arizona State: Artificial Hydrogenases: Utilization of Redox Non-Innocent Ligands in Iron Complexes for Hydrogen Production	
VIII.3	Custom Sensor Solutions: Hydrogen Safety, Codes and Standards: Sensors	
California		
II.C.2	Sandia National Laboratories: Solar Hydrogen Production with a Metal Oxide-Based Thermochemical Cycle	II-39
II.D.3	Lawrence Livermore National Laboratory: Characterization and Optimization of Photoelectrode Surfaces for Solar-to-Chemical Fuel Conversion	
II.E.1	University of California, Berkeley: Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures	II-63
II.F.1	Sacramento Municipal Utility District : Bio-Fueled Solid Oxide Fuel Cells	II-81
II.G.10	Lawrence Berkeley National Laboratory: Joint Center for Artificial Photosynthesis: An Overview	II-111
II.G.11	Lawrence Berkeley National Laboratory: Joint Center for Artificial Photosynthesis: Corrosion Protection Schemes to Enable Durable Solar Water Splitting Devices	II-115
II.G.12	Caltech: Joint Center for Artificial Photosynthesis: High Throughput Experimentation for Electrocatalyst and Photoabsorber Discovery	II-119
II.G.15	Stanford University: Center on Nanostructuring for Efficient Energy Conversion (CNEEC)	
II.G.17	Caltech: Joint Center for Artificial Photosynthesis: Benchmarking Electrocatalysts for the Oxygen	
	Evolution Reaction	
	Caltech: Joint Center for Artificial Photosynthesis: Si Microwire-Based Solar Water Splitting Devices	
11.G.20	Lawrence Berkeley National Laboratory: Joint Center for Artificial Photosynthesis: Modeling and Simulation Team	
III.5	Sandia National Laboratories: Hydrogen Embrittlement of Structural Steels	
III.7	Ben C. Gerwick Inc.: Vessel Design and Fabrication Technology for Stationary High-Pressure Hydrogen Storage.	
III.8	Lawrence Livermore National Laboratory: Preliminary Testing of LLNL/Linde 875-bar Liquid Hydrogen Pump	
III.8	Linde LLC: Preliminary Testing of LLNL/Linde 875-bar Liquid Hydrogen Pump	
III.9	HyGen Industries: Development of a Centrifugal Hydrogen Pipeline Gas Compressor	
IV.B.1	Jet Propulsion Laboratory: Hydrogen Storage Engineering Center of Excellence	
IV.B.1	California Institute of Technology: Hydrogen Storage Engineering Center of Excellence	
IVC 1	H2 Technology Consulting LLC: Hydrogen Sorbent Measurement Qualification and Characterization	IV-68

l	ifornia (Continued)	
	IV.C.2	Lawrence Berkeley National Laboratory: Hydrogen Storage in Metal-Organic Frameworks	IV-73
	IV.D.1	University of California, Los Angeles: Design of Novel Multi-Component Metal Hydride-Based Mixtures for Hydrogen Storage	IV-92
	IV.F.4	Lawrence Livermore National Laboratory: Thermomechanical Cycling of Thin-Liner High-Fiber-Fraction Cryogenic Pressure Vessels Rapidly Refueled a by LH2 pump to 700 bar	IV-136
	IV.F.4	Linde LLC: Thermomechanical Cycling of Thin-Liner High-Fiber-Fraction Cryogenic Pressure Vessels Rapidly Refueled a by LH2 pump to 700 bar	IV-136
	IV.F.4	Spencer Composites Corporation: Thermomechanical Cycling of Thin-Liner High-Fiber-Fraction Cryogenic Pressure Vessels Rapidly Refueled a by LH2 pump to 700 bar.	IV-136
	V.D.1	Lawrence Berkeley National Laboratory: High-Performance, Durable, Low-Cost Membrane Electrode Assemblies for Transportation Applications	V-95
	V.E.1	Lawrence Berkeley National Laboratory: Durability Improvements through Degradation Mechanism Studies	V-105
	V.E.2	Lawrence Berkeley National Laboratory: Accelerated Testing Validation.	V-111
	V.G.1	Lawrence Berkeley National Laboratory: Fuel Cell Fundamentals at Low and Subzero Temperatures	
	V.H.2	Electricore, Inc.: Roots Air Management System with Integrated Expander	
	V.I.5	University of California, Irvine: Enlarging the Potential Market for Stationary Fuel Cells through System Design Optimization	V-190
	V.I.7	Lawrence Berkeley National Laboratory: A Total Cost of Ownership Model for PEM Fuel Cells in Combined Heat and Power and Backup Power Applications	V-196
	V.I.7	University of California, Berkeley: A Total Cost of Ownership Model for PEM Fuel Cells in Combined Heat and Power and Backup Power Applications	V-196
	VI.3	Quantum Fuel Systems Technologies Worldwide, Inc.: Development of Advanced Manufacturing Technologies for Low-Cost Hydrogen Storage Vessels.	VI-15
	VII.9	California Air Resources Board: Data Collection and Validation of Newport Beach Hydrogen Station Performance	VII-46
	VII.9	Hydrogenics Corporation: Data Collection and Validation of Newport Beach Hydrogen Station Performance	VII-46
	VII.10	California State University, Los Angeles: California State University Los Angeles Hydrogen Refueling Facility Performance Evaluation and Optimization	VII-49
	VII.11	Linde LLC: Performance Evaluation of Delivered Hydrogen Fueling Stations	VII-52
	VII.12	Sandia National Laboratories: Hydrogen Fueling Infrastructure Research and Station Technology	VII-57
	VII.15	California Fuel Cell Partnership: H2-FCEV Commercialization - Facilitating Collaboration, Obtaining Real World Expertise, and Developing New Analysis Tools	VII-66
	VIII.3	Lawrence Livermore National Laboratory: Hydrogen Safety, Codes and Standards: Sensors	VIII-16
	VIII.4	Sandia National Laboratories: R&D for Safety, Codes and Standards: Materials and Components Compatibility	
	VIII.6	Sandia National Laboratories: R&D for Safety Codes and Standards: Hydrogen Release Behavior and Risk Assessment	. VIII-34
	VIII.7	California Fuel Cell Partnership: Hydrogen Emergency Response Training for First Responders	. VIII-40
	VIII.8	Fluer, Inc.: Hydrogen Safety Panel and Hydrogen Safety Knowledge Tools	
	VIII.8	City of Santa Fe Springs: Hydrogen Safety Panel and Hydrogen Safety Knowledge Tools	. VIII-43
	VIII.10	Lawrence Livermore National Laboratory: Hands-on Hydrogen Safety Training	
	IX.5	Sandia National Laboratories: Maritime Fuel Cell Generator Project	IX-23
	X.8	University of California, Irvine: Tri-Generation Fuel Cell Technologies for Location-Specific	
		Applications	X-44

Colorado		
II.B.1	National Renewable Energy Laboratory: Renewable Electrolysis Integrated Systems Development and Testing	II-1′
II.B.1	Spectrum Automation Controls: Renewable Electrolysis Integrated Systems Development and Testing	II-1′
II.B.4	National Renewable Energy Laboratory: High-Performance, Long-Lifetime Catalysts for Proton Exchange Membrane Electrolysis	II-28
II.C.1	University of Colorado, Boulder: Solar-Thermal Redox-Based Water Splitting Cycles	
II.C.2	University of Colorado, Boulder: Solar Hydrogen Production with a Metal Oxide-Based Thermochemical Cycle.	
II.C.2	Colorado School of Mines: Solar Hydrogen Production with a Metal Oxide-Based Thermochemical Cycle	II-39
II.D.1	National Renewable Energy Laboratory: Semiconductor Materials for Photoelectrolysis	
II.D.2	National Renewable Energy Laboratory: Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen	
II.E.2	National Renewable Energy Laboratory: Biological Systems for Algal Hydrogen Photoproduction	II-6
II.E.3	National Renewable Energy Laboratory: Fermentation and Electrohydrogenic Approaches to Hydrogen Production	
II.E.4	National Renewable Energy Laboratory: Probing O2-Tolerant CBS Hydrogenase for Hydrogen Production	
II.F.1	TDA Research: Bio-Fueled Solid Oxide Fuel Cells.	II-8
II.G.3	National Renewable Energy Laboratory: Oxidatively Stable Nanoporous Silicon Photocathodes for Photoelectrochemical Hydrogen Evolution	
II.G.7	National Renewable Energy Laboratory: Photobiohybrid Solar Fuels	
II.G.14	National Renewable Energy Laboratory: Photobiohybrid Solar Fuels Nanoparticle-Hydrogenase Complexes	
III.11	National Renewable Energy Laboratory: 700-Bar Hydrogen Dispenser Hose Reliability Improvement	. III-58
III.11	Spectrum Automation Controls: 700-Bar Hydrogen Dispenser Hose Reliability Improvement	. III-58
IV.B.1	National Renewable Energy Laboratory: Hydrogen Storage Engineering Center of Excellence	. IV-22
IV.B.5	National Renewable Energy Laboratory: System Design, Analysis, Modeling, and Media Engineering Properties for Hydrogen Energy Storage.	. IV-4
IV.C.1	National Renewable Energy Laboratory: Hydrogen Sorbent Measurement Qualification and Characterization.	. IV-68
V.A.2	National Renewable Energy Laboratory: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes.	V-1:
V.A.2	Colorado School of Mines: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes	V-1
V.A.6	National Renewable Energy Laboratory: Tungsten Oxide and Heteropoly Acid-Based System for Ultra-High Activity and Stability of Pt Catalysts in Proton Exchange Membrane Fuel Cell Cathodes	V-30
V.A.6	Colorado School of Mines: Tungsten Oxide and Heteropoly Acid-Based System for Ultra-High Activity and Stability of Pt Catalysts in Proton Exchange Membrane Fuel Cell Cathodes	V-30
V.A.6	University of Colorado, Boulder: Tungsten Oxide and Heteropoly Acid-Based System for Ultra-High Activity and Stability of Pt Catalysts in Proton Exchange Membrane Fuel Cell Cathodes	V-30
V.C.2	Colorado School of Mines: Advanced Hybrid Membranes for Next Generation PEMFC Automotive Applications	V-87
V.C.2	National Renewable Energy Laboratory: Advanced Hybrid Membranes for Next Generation PEMFC Automotive Applications	V-87
V.E.3	National Renewable Energy Laboratory: Fuel Cell Technology Status—Cost and Price Status	. V-118
V.F.1	National Renewable Energy Laboratory: Effect of System Contaminants on PEMFC Performance and Durability	. V-128
VF1	Colorado School of Mines: Effect of System Contaminants on PEMFC Performance and Durability	V-129

Colorado (C	Continued)	
V.I.5	National Renewable Energy Laboratory: Enlarging the Potential Market for Stationary Fuel Cells through System Design Optimization	V-190
V.L.1	National Renewable Energy Laboratory: Advanced Ionomers and MEAs for Alkaline Membrane Fuel Cells	V-211
V.L.1	Colorado School of Mines: Advanced Ionomers and MEAs for Alkaline Membrane Fuel Cells	V-211
V.M.1	National Renewable Energy Laboratory: Best Practices and Benchmark Activities for ORR Measurements by the Rotating Disk Electrode Technique	V-215
VI.1	National Renewable Energy Laboratory: Fuel Cell Membrane Electrode Assembly Manufacturing R&D	
VII.1	National Renewable Energy Laboratory: Technology Validation: Fuel Cell Bus Evaluations	
VII.2	National Renewable Energy Laboratory: Stationary Fuel Cell Evaluation.	
VII.4	National Renewable Energy Laboratory: Hydrogen Component Validation	
VII.4	Spectrum Automation Controls: Hydrogen Component Validation	
VII.6	National Renewable Energy Laboratory: Forklift and Backup Power Data Collection and Analysis	
VII.7	National Renewable Energy Laboratory: Fuel Cell Electric Vehicle Evaluation	
VII.8	National Renewable Energy Laboratory: Next Generation Hydrogen Infrastructure Evaluation	
VIII.1	National Renewable Energy Laboratory: Fuel Cell Technologies National Codes and Standards Development and Outreach	
VIII.2	National Renewable Energy Laboratory: Component Standard Research and Development	
VIII.9	National Renewable Energy Laboratory: NREL Hydrogen Sensor Testing Laboratory	
VIII.9	Element One: NREL Hydrogen Sensor Testing Laboratory	
X.3	National Renewable Energy Laboratory: Pathway Analysis: Projected Cost, Life-Cycle Energy Use and Emissions of Future Hydrogen Technologies	
X.9	National Renewable Energy Laboratory: Electricity Market Valuation for Hydrogen Technologies	
Connecticut		
II.B.2	Proton OnSite: Economical Production of Hydrogen through Development of Novel, High-Efficiency Electrocatalysts for Alkaline Membrane Electrolysis.	II-21
II.B.3	Proton OnSite: Low-Noble-Metal-Content Catalysts/Electrodes for Hydrogen Production by Water Electrolysis.	
II.F.1	FuelCell Energy, Inc.: Bio-Fueled Solid Oxide Fuel Cells	
III.6	FuelCell Energy, Inc.: Electrochemical Hydrogen Compressor	
III.6	Sustainable Innovations, LLC: Electrochemical Hydrogen Compressor	
IV.B.1	United Technologies Research Center: Hydrogen Storage Engineering Center of Excellence	
IV.B.3	United Technologies Research Center: Advancement of Systems Designs and Key Engineering Technologies for Materials-Based Hydrogen Storage	
V.D.2	United Technologies Research Center: Rationally Designed Catalyst Layers for PEMFC Performance Optimization.	
V.F.2	University of Connecticut: The Effect of Airborne Contaminants on Fuel Cell Performance and Durability	
V.F.2	WPCSOL, LLC: The Effect of Airborne Contaminants on Fuel Cell Performance and Durability	
V.G.1	United Technologies Research Center: Fuel Cell Fundamentals at Low and Subzero Temperatures	
VI.2	UTC Power: Manufacturing of Low-Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning	
VII.5	Proton OnSite: Validation of an Advanced High-Pressure PEM Electrolyzer and Composite Hydrogen Storage, with Data Reporting, for SunHydro Stations	
VII.5	SunHydro LLC: Validation of an Advanced High-Pressure PEM Electrolyzer and Composite Hydrogen Storage, with Data Reporting, for SunHydro Stations	. VII-26

Connecticu	t (Continued)	
VIII.8	Proton OnSite: Hydrogen Safety Panel and Hydrogen Safety Knowledge Tools	. VIII-43
VIII.8	GWS Solutions of Tolland, LLC: Hydrogen Safety Panel and Hydrogen Safety Knowledge Tools	. VIII-43
Delaware		
IV.D.2	Delaware State University: Hydrogen Storage Materials for Fuel Cell-Powered Vehicles	IV-95
IV.D.2	University of Delaware: Hydrogen Storage Materials for Fuel Cell-Powered Vehicles	IV-95
V.A.2	University of Delaware: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes	V-15
V.A.5	University of Delaware: The Science and Engineering of Durable Ultra-Low PGM Catalysts	V-30
V.E.1	Ion Power Inc.: Durability Improvements through Degradation Mechanism Studies	V-105
V.E.2	Ion Power Inc.: Accelerated Testing Validation.	V-111
V.J.1	University of Delaware: Advanced Materials and Concepts for Portable Power Fuel Cells	V-201
VI.2	University of Delaware: Manufacturing of Low-Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning.	VI-11
Florida		
VIII.8	Addison Bain: Hydrogen Safety Panel and Hydrogen Safety Knowledge Tools	. VIII-43
Georgia		
II.G.6	University of Georgia: Hyperthermophilic Multiprotein Complexes and Pathways for Energy Conservation and Catalysis	II-100
Hawaii		
V.F.2	Hawaii Natural Energy Institute: The Effect of Airborne Contaminants on Fuel Cell Performance and Durability	V-133
IX.3	Hawaii Natural Energy Institute: Hydrogen Energy Systems as a Grid Management Tool	IX-15
Illinois		
II.B.2	Illinois Institute of Technology: Economical Production of Hydrogen through Development of Novel, High-Efficiency Electrocatalysts for Alkaline Membrane Electrolysis	II-21
II.G.4	Argonne National Laboratory: Fundamental Design and Mechanisms for Solar Hydrogen Production in Natural and Artificial Photosynthetic Systems	II-94
II.G.19	Northwestern University: Argonne-Northwestern Solar Energy Research (ANSER) Center	II-141
III.1	Argonne National Laboratory: Hydrogen Delivery Infrastructure Analysis	III-11
IV.A.1	Argonne National Laboratory: System Analysis of Physical and Materials-Based Hydrogen Storage Options	IV-11
IV.D.1	Northwestern University: Design of Novel Multi-Component Metal Hydride-Based Mixtures for Hydrogen Storage.	IV-92
V.A.1	Argonne National Laboratory: Durable Catalysts for Fuel Cell Protection during Transient Conditions	V-9
V.A.3	Argonne National Laboratory: Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading	V-19
V.A.7	Illinois Institute of Technology: Synthesis and Characterization of Mixed-Conducting Corrosion-Resistant Oxide Supports	
V.A.12	Argonne National Laboratory: Non-PGM Cathode Catalysts using ZIF-Based Precursors with Nanonetwork Architecture.	
V.D.1	Argonne National Laboratory: High-Performance, Durable, Low-Cost Membrane Electrode Assemblies for Transportation Applications	V-95
V.D.2	Argonne National Laboratory: Rationally Designed Catalyst Layers for PEMFC Performance Optimization.	V-100
VE1	Argonne National Laboratory: Durability Improvements through Degradation Mechanism Studies	V-105

Illinois (Co	ntinued)
V.I.1	Argonne National Laboratory: Performance of Advanced Automotive Fuel Cell Systems with Heat Rejection Constraints
V.M.1	Argonne National Laboratory: Best Practices and Benchmark Activities for ORR Measurements by the Rotating Disk Electrode Technique
VII.11	Gas Technology Institute: Performance Evaluation of Delivered Hydrogen Fueling Stations VII-52
IX.2	Gas Technology Institute: Landfill Gas-to-Hydrogen
X.2	Argonne National Laboratory: Employment Impacts of Infrastructure Development for Hydrogen and Fuel Cell Technologies
X.2	RCF Economic and Financial Consulting, Inc.: Employment Impacts of Infrastructure Development for Hydrogen and Fuel Cell Technologies
X.4	Argonne National Laboratory: Life-Cycle Analysis of Water Use for Hydrogen Production Pathways X-27
X.5	Argonne National Laboratory: Impact of Fuel Cell System Peak Efficiency on Fuel Consumption and Cost
X.6	Argonne National Laboratory: Analysis of Incremental Fueling Pressure Cost
Indiana	
V.D.2	Indiana University Purdue University: Rationally Designed Catalyst Layers for PEMFC Performance Optimization
Maryland	
IV.B.5	Mark Paster: System Design, Analysis, Modeling, and Media Engineering Properties for Hydrogen Energy Storage
IV.C.2	National Institute of Standards and Technology: Hydrogen Storage in Metal-Organic Frameworks IV-73
IV.D.3	National Institute of Standards and Technology: Neutron Characterization in Support of the DOE Hydrogen Storage Program
V.D.1	Johns Hopkins University: High-Performance, Durable, Low-Cost Membrane Electrode Assemblies for Transportation Applications
V.I.4	National Institute of Standards and Technology: Neutron Imaging Study of the Water Transport in Operating Fuel Cells
VI.2	W. L. Gore & Associates, Inc.: Manufacturing of Low-Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning
Massachuse	etts
II.B.4	Giner, Inc.: High-Performance, Long-Lifetime Catalysts for Proton Exchange Membrane Electrolysis II-28
III.9	Concepts NREC: Development of a Centrifugal Hydrogen Pipeline Gas Compressor
IV.E.1	Boston College: Novel Carbon(C)-Boron(B)-Nitrogen(N)-Containing H2 Storage Materials
IV.E.1	Protonex Technology Corporation: Novel Carbon(C)-Boron(B)-Nitrogen(N)-Containing H2 Storage Materials
V.A.8	Northeastern University: Development of Novel Non-PGM Electrocatalysts for Proton Exchange Membrane Fuel Cell Applications
V.A.9	Massachusetts Institute of Technology: High-Activity Dealloyed Catalysts
V.A.9	Northeastern University: High-Activity Dealloyed Catalysts
V.B.1	Giner, Inc.: Dimensionally Stable High Performance Membrane
V.G.2	Giner, Inc.: Transport in Proton Exchange Membrane Fuel Cells
V.G.2	Tech-Etch: Transport in Proton Exchange Membrane Fuel Cells
V.G.2	Ballard Material Products, Inc.: Transport in Proton Exchange Membrane Fuel Cells
VII.13	Acumentrics: Demonstration of SOFC Generator Fueled by Propane to Provide Electrical Power to Real World Applications

Massachuse	tts (Continued)
VIII.8	Firexplo: Hydrogen Safety Panel and Hydrogen Safety Knowledge Tools
IX.2	Ameresco, Inc.: Landfill Gas-to-Hydrogen
Michigan	
IV.B.1	General Motors Company: Hydrogen Storage Engineering Center of Excellence
IV.B.1	Ford Motor Company: Hydrogen Storage Engineering Center of Excellence
IV.B.1	University of Michigan: Hydrogen Storage Engineering Center of Excellence
IV.B.6	General Motors Company: Thermal Management of Onboard Cryogenic Hydrogen Storage Systems IV-52
IV.B.7	Ford Motor Company: Ford/BASF-SE/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence
IV.B.7	University of Michigan: Ford/BASF-SE/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence
IV.C.2	General Motors Company: Hydrogen Storage in Metal-Organic Frameworks
IV.D.1	Ford Motor Company: Design of Novel Multi-Component Metal Hydride-Based Mixtures for Hydrogen Storage
IV.F.3	Ford Motor Company: Synergistically Enhanced Materials and Design Parameters for Reducing the Cost of Hydrogen Storage Tanks
V.A.2	General Motors Company: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes V-15
V.A.7	Nissan Technical Center: Synthesis and Characterization of Mixed-Conducting Corrosion-Resistant Oxide Supports
V.A.8	Michigan State University: Development of Novel Non-PGM Electrocatalysts for Proton Exchange Membrane Fuel Cell Applications
V.A.8	Nissan Technical Center: Development of Novel Non-PGM Electrocatalysts for Proton Exchange Membrane Fuel Cell Applications
V.A.9	General Motors Company: High-Activity Dealloyed Catalysts
V.C.1	General Motors Company: New Fuel Cell Membranes with Improved Durability and Performance
V.C.2	Nissan Technical Center: Advanced Hybrid Membranes for Next Generation PEMFC Automotive Applications
V.D.1	Michigan Technological University: High-Performance, Durable, Low-Cost Membrane Electrode Assemblies for Transportation Applications
V.D.1	General Motors Company: High-Performance, Durable, Low-Cost Membrane Electrode Assemblies for Transportation Applications
V.G.3	General Motors Company: Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance
V.H.2	Kettering University: Roots Air Management System with Integrated Expander
VIII.8	General Motors Company: Hydrogen Safety Panel and Hydrogen Safety Knowledge Tools VIII-43
Minnesota	
II.B.4	3M Company: High-Performance, Long-Lifetime Catalysts for Proton Exchange Membrane Electrolysis II-28
V.A.1	3M Company: Durable Catalysts for Fuel Cell Protection during Transient Conditions
V.A.3	3M Company: Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading
V.C.1	3M Company: New Fuel Cell Membranes with Improved Durability and Performance
V.C.2	3M Company: Advanced Hybrid Membranes for Next Generation PEMFC Automotive Applications V-87
V.D.1	3M Company: High-Performance, Durable, Low-Cost Membrane Electrode Assemblies for Transportation Applications
V.G.1	3M Company: Fuel Cell Fundamentals at Low and Subzero Temperatures
V.L.1	3M Company: Advanced Ionomers and MEAs for Alkaline Membrane Fuel Cells

XV. Project Listings by State

Missouri		
IV.C.4	University of Missouri: Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage	IV-86
VIII.8	Becht Engineering: Hydrogen Safety Panel and Hydrogen Safety Knowledge Tools	
Nebraska		
III.3	Hexagon Lincoln: Development of High-Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery	III-21
IV.B.1	Hexagon Lincoln: Hydrogen Storage Engineering Center of Excellence	IV-22
IV.B.9	Hexagon Lincoln: Development of Improved Composite Pressure Vessels for Hydrogen Storage	IV-65
IV.F.3	Hexagon Lincoln: Synergistically Enhanced Materials and Design Parameters for Reducing the Cost of Hydrogen Storage Tanks	V-131
Nevada		
II.D.1	University of Nevada, Las Vegas: Semiconductor Materials for Photoelectrolysis	.II-48
New Jersey		
IV.C.3	Rutgers University: Hydrogen Trapping through Designer Hydrogen Spillover Molecules with Reversible Temperature and Pressure-Induced Switching	IV-79
New Mexico	0	
IV.B.1	Los Alamos National Laboratory: Hydrogen Storage Engineering Center of Excellence	IV-22
IV.B.4	Los Alamos National Laboratory: Chemical Hydride Rate Modeling, Validation, and System Demonstration	IV-43
V.A.5	Los Alamos National Laboratory: The Science and Engineering of Durable Ultra-Low PGM Catalysts	. V-30
V.A.5	University of New Mexico: The Science and Engineering of Durable Ultra-Low PGM Catalysts	. V-30
V.A.8	University of New Mexico: Development of Novel Non-PGM Electrocatalysts for Proton Exchange Membrane Fuel Cell Applications	. V-50
V.A.8	Pajarito Powder: Development of Novel Non-PGM Electrocatalysts for Proton Exchange Membrane Fuel Cell Applications	. V-50
V.A.8	Los Alamos National Laboratory: Development of Novel Non-PGM Electrocatalysts for Proton Exchange Membrane Fuel Cell Applications	. V-50
V.A.11	Los Alamos National Laboratory: Non-Precious Metal Fuel Cell Cathodes: Catalyst Development and Electrode Structure Design.	.V-69
V.A.11	IRD Fuel Cells, LLC: Non-Precious Metal Fuel Cell Cathodes: Catalyst Development and Electrode Structure Design	.V-69
V.C.3	Los Alamos National Laboratory: Resonance-Stabilized Anion Exchange Polymer Electrolytes	. V-91
V.D.1	Los Alamos National Laboratory: High-Performance, Durable, Low-Cost Membrane Electrode Assemblies for Transportation Applications	.V-95
V.E.1	Los Alamos National Laboratory: Durability Improvements through Degradation Mechanism Studies	V-105
V.E.2	Los Alamos National Laboratory: Accelerated Testing Validation.	V-111
V.E.4	Los Alamos National Laboratory: Open-Source PEMFC-Performance and Durability Model Consideration of Membrane Properties on Cathode Degradation	V-122
V.G.1	Los Alamos National Laboratory: Fuel Cell Fundamentals at Low and Subzero Temperatures	V-140
V.J.1	Los Alamos National Laboratory: Advanced Materials and Concepts for Portable Power Fuel Cells	V-201
VIII.3	Los Alamos National Laboratory: Hydrogen Safety, Codes and Standards: Sensors	III-16
VIII 5	Los Alamos National Laboratory: Hydrogen Fuel Quality	111_28

New York	
II.B.3	Brookhaven National Laboratory: Low-Noble-Metal-Content Catalysts/Electrodes for Hydrogen Production by Water Electrolysis
II.G.2	University of Rochester: Real-Time Atomistic Simulation of Light Harvesting and Charge Transport for Solar Hydrogen Production
II.G.8	Brookhaven National Laboratory: Heterogeneous Water Oxidation Catalysis With Molecular Catalysts II-106
II.G.9	Brookhaven National Laboratory: Proton-Coupled Electron Transfer in Artificial Photosynthesis II-108
III.2	Mohawk Innovative Technologies, Inc.: Oil-Free Centrifugal Hydrogen Compression Technology Demonstration
IV.E.2	Brookhaven National Laboratory: Aluminum Hydride: the Organo-Metallic Approach
V.A.4	Brookhaven National Laboratory: Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability Low-Cost Supports
V.A.11	General Motors Company: Non-Precious Metal Fuel Cell Cathodes: Catalyst Development and Electrode Structure Design
V.A.11	University of Rochester: Non-Precious Metal Fuel Cell Cathodes: Catalyst Development and Electrode Structure Design
V.F.1	General Motors Company: Effect of System Contaminants on PEMFC Performance and Durability V-128
V.G.3	Rochester Institute of Technology: Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance
V.G.3	University of Rochester: Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance
V.J.1	Brookhaven National Laboratory: Advanced Materials and Concepts for Portable Power Fuel Cells V-201
VII.3	H2Pump LLC: Hydrogen Recycling System Evaluation and Data Collection
VII.14	Plug Power Inc.: Accelerating Acceptance of Fuel Cell Backup Power Systems
IX.4	Plug Power Inc.: Ground Support Equipment Demonstration
Ohio	
II.D.2	Midwest Optoelectronics, LLC: Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen
II.D.2	Xunlight Corporation: Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen
II.D.2	University of Toledo: Critical Research for Cost-Effective Photoelectrochemical Production of HydrogenII-53
V.I.6	Battelle: Stationary and Emerging Market Fuel Cell System Cost Analysis - Material Handling
	Equipment
VIII.8	Powdermet Inc.: Hydrogen Safety Panel and Hydrogen Safety Knowledge Tools VIII-43
Oregon	
IV.B.1	Oregon State University: Hydrogen Storage Engineering Center of Excellence
IV.B.8	Oregon State University: Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage
VII.14	IdaTech, LLC: Accelerating Acceptance of Fuel Cell Backup Power Systems
IX.1	ClearEdge Power: Fuel Cell Combined Heat and Power Commercial Demonstration
Pennsylvan	ia
II.C.2	Bucknell University: Solar Hydrogen Production with a Metal Oxide-Based Thermochemical CycleII-39
II.E.3	Pennsylvania State University: Fermentation and Electrohydrogenic Approaches to Hydrogen Production II-71
IV.C.3	Pennsylvania State University: Fermentation and Electrohydrogenie Approaches to Trydrogen Troduction Pennsylvania State University: Hydrogen Trapping through Designer Hydrogen Spillover Molecules with Reversible Temperature and Pressure-Induced Switching

Pennsylvan	ia (Continued)
V.A.3	University of Pittsburgh: Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading
V.A.11	Carnegie Mellon University: Non-Precious Metal Fuel Cell Cathodes: Catalyst Development and Electrode Structure Design
V.G.3	Pennsylvania State University: Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance
VII.5	Air Products and Chemicals, Inc.: Validation of an Advanced High-Pressure PEM Electrolyzer and Composite Hydrogen Storage, with Data Reporting, for SunHydro Stations
VIII.8	Air Products and Chemicals, Inc.: Hydrogen Safety Panel and Hydrogen Safety Knowledge Tools VIII-43
Rhode Islan	nd
V.A.3	Brown University: Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading
South Caro	lina
II.C.3	Savannah River National Laboratory: Electrolyzer Development for the HyS Thermochemical Cycle II-45
III.4	Savannah River National Laboratory: Fiber Reinforced Composite Pipeline
IV.B.1	Savannah River National Laboratory: Hydrogen Storage Engineering Center of Excellence
IV.E.3	Savannah River National Laboratory: Electrochemical Reversible Formation of Alane
IV.F.5	Savannah River National Laboratory: Load-Sharing Polymeric Liner for Hydrogen Storage Composite Tanks
V.A.10	University of South Carolina: Development of Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells
V.F.1	University of South Carolina: Effect of System Contaminants on PEMFC Performance and Durability V-128
V.G.2	University of South Carolina: Transport in Proton Exchange Membrane Fuel Cells
V.H.1	Tetramer Technologies, LLC: New High-Performance Water Vapor Membranes To Improve Fuel Cell Balance-of-Plant Efficiency and Lower Costs (SBIR Phase II)
IX.2	Advanced Technology International: Landfill Gas-to-Hydrogen
Tennessee	
III.7	Oak Ridge National Laboratory: Vessel Design and Fabrication Technology for Stationary High-Pressure Hydrogen Storage
IV.F.1	Oak Ridge National Laboratory: Melt Processable PAN Precursor for High-Strength, Low-Cost Carbon Fibers (Phase II)
IV.F.2	Oak Ridge National Laboratory: Development of Low-Cost, High-Strength Commercial Textile Precursor (PAN-MA)
IV.F.3	AOC, LLC: Synergistically Enhanced Materials and Design Parameters for Reducing the Cost of Hydrogen Storage Tanks
V.A.1	Oak Ridge National Laboratory: Durable Catalysts for Fuel Cell Protection during Transient Conditions V-9
V.A.2	Oak Ridge National Laboratory: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes
V.A.3	Oak Ridge National Laboratory: Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading V-19
V.A.11	Oak Ridge National Laboratory: Non-Precious Metal Fuel Cell Cathodes: Catalyst Development and Electrode Structure Design
V.C.1	Vanderbilt University: New Fuel Cell Membranes with Improved Durability and Performance
V.E.1	Oak Ridge National Laboratory: Durability Improvements through Degradation Mechanism Studies V-105
V.E.2	Oak Ridge National Laboratory: Accelerated Testing Validation
V.G.3	University of Tennessee: Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance
V.I.3	Oak Ridge National Laboratory: Characterization of Fuel Cell Materials

Tennessee ((Continued)	
VI.2	University of Tennessee: Manufacturing of Low-Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning.	. VI-11
X.1	Oak Ridge National Laboratory: Analysis of Optimal Onboard Storage Pressure for Hydrogen Fuel Cell Vehicles.	X-13
X.7	Oak Ridge National Laboratory: Hydrogen Station Economics and Business (HySEB)Preliminary Results	. X-40
Texas		
III.9	Texas A&M University: Development of a Centrifugal Hydrogen Pipeline Gas Compressor	. III-49
V.D.2	University of Texas at Austin: Rationally Designed Catalyst Layers for PEMFC Performance Optimization.	. V-100
VIII.8	Air Liquide: Hydrogen Safety Panel and Hydrogen Safety Knowledge Tools	
Utah		
III.7	MegaStir Technologies: Vessel Design and Fabrication Technology for Stationary High-Pressure Hydrogen Storage	. III-39
Virginia		
II.A.1	Strategic Analysis, Inc.: Hydrogen Pathways Analysis for Polymer Electrolyte Membrane (PEM) Electrolysis	II-11
IV.A.2	Strategic Analysis, Inc.: Hydrogen Storage Cost Analysis	. IV-17
IV.B.5	Strategic Analysis, Inc.: System Design, Analysis, Modeling, and Media Engineering Properties for Hydrogen Energy Storage	. IV-47
IV.F.1	Virginia Polytechnic Institute and State University: Melt Processable PAN Precursor for High-Strength, Low-Cost Carbon Fibers (Phase II)	IV-118
IV.F.5	Virginia Polytechnic Institute and State University: Load-Sharing Polymeric Liner for Hydrogen Storage Composite Tanks.	IV-140
V.G.2	Virginia Polytechnic Institute and State University: Transport in Proton Exchange Membrane Fuel Cells	. V-146
V.I.2	Strategic Analysis, Inc.: Fuel Cell Transportation Cost Analysis	. V-173
V.I.7	Strategic Analysis, Inc.: A Total Cost of Ownership Model for PEM Fuel Cells in Combined Heat and Power and Backup Power Applications	. V-196
V.J.1	Virginia Polytechnic Institute and State University: Advanced Materials and Concepts for Portable Power Fuel Cells.	. V-201
VIII.8	William C. Fort: Hydrogen Safety Panel and Hydrogen Safety Knowledge Tools	VIII-43
Washington	n	
III.7	Global Engineering and Technology: Vessel Design and Fabrication Technology for Stationary High-Pressure Hydrogen Storage.	. III-39
III.10	Pacific Northwest National Laboratory: Investigation of H2 Diaphragm Compressors to Enable Low-Cost Long-Life Operation	
IV.B.1	Pacific Northwest National Laboratory: Hydrogen Storage Engineering Center of Excellence	
IV.B.2	Pacific Northwest National Laboratory: Systems Engineering of Chemical Hydrogen Storage, Pressure Vessel, and Balance of Plant for Onboard Hydrogen Storage	. IV-30
IV.E.1	Pacific Northwest National Laboratory: Novel Carbon(C)-Boron(B)-Nitrogen(N)-Containing H2 Storage Materials	
IV.F.3	Pacific Northwest National Laboratory: Synergistically Enhanced Materials and Design Parameters for Reducing the Cost of Hydrogen Storage Tanks	IV-131

Washington	n (Continued)	
V.K.1	InnovaTek, Inc.: Power Generation from an Integrated Biomass Reformer and Solid Oxide Fuel Cell (SBIR Phase III Xlerator Program)	V-208
VI.3	Boeing Research and Technology: Development of Advanced Manufacturing Technologies for Low-Cost Hydrogen Storage Vessels.	VI-15
VI.3	Pacific Northwest National Laboratory: Development of Advanced Manufacturing Technologies for Low-Cost Hydrogen Storage Vessels.	VI-15
VIII.7	Pacific Northwest National Laboratory: Hydrogen Emergency Response Training for First Responders	TII-40
VIII.7	Hazardous Materials Management and Emergency Response Training and Eduction Center: Hydrogen Emergency Response Training for First Responders	TII-40
VIII.8	Pacific Northwest National Laboratory: Hydrogen Safety Panel and Hydrogen Safety Knowledge Tools	′III-43
IX.1	Pacific Northwest National Laboratory: Fuel Cell Combined Heat and Power Commercial Demonstration	. IX-7
IX.6	Pacific Northwest National Laboratory: Fuel Cell-Based Auxiliary Power Unit for Refrigerated Trucks	
Washingtor	n, D.C.	
V.A.9	George Washington University: High-Activity Dealloyed Catalysts	. V-56
Wisconsin		
V.H.2	Eaton Corporation: Roots Air Management System with Integrated Expander	V-162
Foreign (Countries	
Canada		
IV.B.1	Université du Québec à Trois-Rivières: Hydrogen Storage Engineering Center of Excellence	IV-22
V.A.1	Dalhousie University: Durable Catalysts for Fuel Cell Protection during Transient Conditions	V-9
V.A.1	Automotive Fuel Cell Cooperation: Durable Catalysts for Fuel Cell Protection during Transient	
	Conditions	
V.A.5	Ballard Fuel Cells: The Science and Engineering of Durable Ultra-Low PGM Catalysts	. V-30
V.A.11	University of Waterloo: Non-Precious Metal Fuel Cell Cathodes: Catalyst Development and Electrode Structure Design	
V.E.2	Ballard Power Systems: Accelerated Testing Validation.	V-111
V.E.4	Ballard Power Systems: Open-Source PEMFC-Performance and Durability Model Consideration of Membrane Properties on Cathode Degradation	V-122
V.E.4	University of Calgary: Open-Source PEMFC-Performance and Durability Model Consideration of Membrane Properties on Cathode Degradation	V-122
V.F.2	Ballard Power Systems: The Effect of Airborne Contaminants on Fuel Cell Performance and Durability	V-133
V.G.1	McGill University: Fuel Cell Fundamentals at Low and Subzero Temperatures	V-140
V.H.2	Ballard Power Systems: Roots Air Management System with Integrated Expander	V-162
V.I.7	Ballard Power Systems: A Total Cost of Ownership Model for PEM Fuel Cells in Combined Heat and Power and Backup Power Applications	V-196
VII.10	Hydrogenics Corporation: California State University Los Angeles Hydrogen Refueling Facility Performance Evaluation and Optimization	VII-49
IX.5	Hydrogenics Corporation: Maritime Fuel Cell Generator Project	IX-23

Germany	
IV.B.7	BASF SE: Ford/BASF-SE/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence
IV.F.4	BMW: Thermomechanical Cycling of Thin-Liner High-Fiber-Fraction Cryogenic Pressure Vessels Rapidly Refueled a by LH2 pump to 700 bar
V.A.9	Technical University Berlin: High-Activity Dealloyed Catalysts
V.J.1	SFC Energy: Advanced Materials and Concepts for Portable Power Fuel Cells
Israel	
V.L.1	CellEra, Inc.: Advanced Ionomers and MEAs for Alkaline Membrane Fuel Cells
Japan	
III.2	Mitsubishi Heavy Industries, Ltd: Oil-Free Centrifugal Hydrogen Compression Technology Demonstration
III.7	Kobe Steel, LTD: Vessel Design and Fabrication Technology for Stationary High-Pressure Hydrogen Storage
United King	gdom
V.A.9	Johnson Matthey Fuel Cells: High-Activity Dealloyed Catalysts
V.D.2	Johnson Matthey Fuel Cells: Rationally Designed Catalyst Layers for PEMFC Performance Optimization
V.J.1	Johnson Matthey Fuel Cells: Advanced Materials and Concepts for Portable Power Fuel Cells