# V.A.6 Development of Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells

Branko N. Popov University of South Carolina 301 Main Street Columbia, SC 29208 Phone: (803) 777-7314; Fax: (803) 777-8265 Email: popov@cec.sc.edu

DOE Manager Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov

Technical Advisor Thomas Benjamin Phone: (630) 252-1632 Email: benjamin@anl.gov

Contract Number: DE-EE0000460

Project Start Date: September 1, 2010 Project End Date: December 31, 2015

# **Overall Objectives**

- Develop a unique hybrid cathode catalyst (HCC) through the interaction of a highly active and stable compressive Pt-lattice catalyst (Pt\*) with an activated carbon composite support (A-CCS) having high activity for the oxygen reduction reaction (ORR)
- Enhance the activity of HCC by increasing the synergistic effect of catalytic active sites present on the supports and those on the Pt\* catalyst
- Specific objectives are to:
  - Perform optimization studies to develop a catalyst support with high kinetic activity and stability.
  - Estimate the role of Brunauer-Emmett-Teller (BET) surface area, porosity, pore size and distribution, and hydrophilic/hydrophobic properties on the support stability.
  - Synthesize a low-platinum group metal (PGM) cathode catalyst for automotive application by decreasing the PGM loading while simultaneously increasing the catalytic activity and stability of both A-CCS and Pt\*.
  - Develop low-cost procedures to synthesize A-CCS and Pt\*/A-CCS.

## Specific Objectives for Fiscal Year (FY) 2015

- Development of an A-CCS with desired BET surface area, porosity, pore-size distribution, and hydrophilic/ hydrophobic properties
- Synthesis and performance evaluation of Pt\*/A-CCS catalyst using optimized A-CCS
  - Initial mass activity under H<sub>2</sub>-O<sub>2</sub>
  - Initial high current density performance under  $H_2$ -air
  - Catalyst durability under 0.6–1.0 V potential cycling experimental conditions
  - Support stability under 1.0–1.5 V potential cycling experimental conditions

# **Technical Barriers**

This project addresses the following technical barriers from the Fuel Cells section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan:

- (A) Durability
- (B) Cost
- (C) Performance

## **Technical Targets**

In this project, studies are being conducted to develop highly active and stable ultra-low Pt loading cathode catalysts for proton exchange membrane (PEM) fuel cells. In FY 2015, a Pt\*/A-CCS catalyst was synthesized using procedures developed at the University of South Carolina (USC). Our results showed that the Pt\*/A-CCS catalyst has the potential to meet the 2017 DOE technical targets for electrocatalysts for automotive applications as shown in Table 1.

# FY 2015 Accomplishments

The following results were accomplished for the Pt\*/A-CCS catalyst:

- Achieved an initial mass activity of 0.41 A/mg<sub>PGM</sub> and loss of mass activity of 46% after 30,000 cycles (0.6–1.0 V)
- Measured a potential loss of 35 mV (iR-free) at 0.8 A/cm<sup>2</sup> after 30,000 cycles (0.6–1.0 V)
- Accomplished 25% ECSA loss after 30,000 cycles (0.6–1.0 V)

TABLE 1. Progress towards Meeting Technical Targets for Electrocatalysts for Automotive Applications

| Characteristic                                                                                                                 | Units                                                                       | 2017 DOE Targets                   | FY 2015 Status at USC<br>(Pt*/A-CCS)                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|--|
| PGM total content                                                                                                              | g/kW (rated)                                                                | 0.125                              | 0.19                                                                 |  |
| PGM total loading                                                                                                              | mg <sub>PGM</sub> /cm <sup>2</sup>                                          | 0.125                              | 0.2                                                                  |  |
| Mass activity (H <sub>2</sub> /O <sub>2</sub> (2/9.5 stoic.) 80 °C,<br>100% RH, 150 kPa <sub>abs</sub> .)                      | A/mg <sub>Pt</sub> @ 0.9 V <sub>iR-free</sub>                               | 0.44                               | 0.41                                                                 |  |
| Catalyst durability<br>(30,000 cycles, 0.6–1.0 V, 50 mV/s, 80 °C, H <sub>2</sub> /N <sub>2</sub> ,<br>100% RH, no back press.) | % mass activity (MA) loss<br>% ECSA loss<br>mV loss @ 0.8 A/cm <sup>2</sup> | ≤40%<br>≤40%<br>≤30 mV @ 0.8 A/cm² | 46% loss (MA)<br>25% loss (ECSA)<br>35 mV loss (H <sub>2</sub> -air) |  |
| Support stability (5,000 cycles, 1.0–1.5 V, 500 mV/s, 80 °C, $H_2/N_2$ , 100% RH, no back press.)                              | % mass activity (MA) loss<br>% ECSA loss<br>mV loss @ 1.5 A/cm²             | ≤40%<br>≤40%<br>≤30 mV @ 1.5 A/cm² | 53% loss (MA)<br>24% loss (ECSA)<br>10 mV gain (H <sub>2</sub> -air) |  |

RH - relative humidity; ECSA - electrochemical active surface area

- Pt\*/A-CCS showed excellent support stability after 5,000 cycles (0.6–1.0 V)
  - Potential gain of ~10 mV (cell potential) was accomplished at 1.5 A/cm<sup>2</sup> after 5,000 cycles
- Accomplished 53% mass activity loss and 24% ECSA loss after 5,000 cycles (1.0–1.5 V)
- Accomplished (rated) initial power density of 0.19 g<sub>PGM</sub>/kW

 $\diamond \quad \diamond \quad \diamond \quad \diamond \quad \diamond$ 

## INTRODUCTION

Novel methodologies were developed at USC to synthesize catalytically active and highly stable carbonbased supports [1–19]. Pt/A-CCS and Pt\*/A-CCS catalysts with enhanced ORR kinetics were developed that showed higher performance than commercial Pt/C at low loadings ( $\leq 0.1 \text{ mg/cm}^2$ ) [17–19]. In FY 2015, a Pt\*/A-CCS catalyst with high activity towards ORR was synthesized and its support stability (1.0–1.5 V potential cycling, 5,000 cycles) and catalyst durability (0.6–1.0 V potential cycling, 30,000 cycles) were evaluated.

## **APPROACH**

The HCC technology developed at USC is based on a two-step patented process to synthesize highly active and stable ultra-low-PGM HCC. The research at USC was aimed at developing catalytically active and stable supports to sustain load cycling and startup/shutdown conditions. In the first step, the following major constraints directed our development of cathode catalyst supports: (1) the support should be chemically and electrochemically stable at high potentials, low pH, and high temperature; and (2) the support should have an onset potential and kinetic activity for ORR similar to that of the platinum catalyst. To accomplish these requirements, an A-CCS was synthesized with optimized (1) BET surface area, porosity, pore size, and pore size distribution; (2) hydrophilic/hydrophobic ratio; (3) structural properties (amorphous/crystalline ratio); (4) number of catalytic active sites through metal catalyzed pyrolysis; (5) Pt/Pt\*-support interaction by inclusion of active surface functional groups; and (6) with cobalt incorporated into its structure, necessary for the formation of Pt\*.

In the second step, a compressive Pt-lattice catalyst (Pt\*) was synthesized through a USC-developed annealing procedure that controls the particle size during annealing. Monolayers of Pt\* were formed by diffusing Co atoms present in the support into Pt which is deposited on the A-CCS. A mathematical model developed at USC was used to optimize the Co diffusion time, annealing temperature, and Pt/Co stoichiometric ratio.

## RESULTS

Synthesis, support stability, and catalyst durability of the Pt/A-CCS catalyst were reported in the FY 2014 annual report. In FY 2015, the A-CCS with optimized physical properties was used for the synthesis of Pt\*/A-CCS to meet the DOE 2017 technical targets for electrocatalysts and catalyst support. Initially, Pt/A-CCS was prepared by depositing Pt nanoparticles on A-CCS using a modified polyol reduction procedure developed at USC [17–19]. Then, a Pt\*/A-CCS catalyst having a particle size distribution of 4–5 nm was synthesized through the controlled annealing of the Pt/A-CCS catalyst. The novel annealing procedure developed at USC inhibited the Pt particle growth at high temperature. The compressive Pt-lattice is formed by the diffusion of cobalt, which is present in the A-CCS, into Pt during the annealing process. The support stability and catalyst durability of the Pt\*/A-CCS catalysts were evaluated using 1.0–1.5 V potential cycling and 0.6–1.0 V potential cycling protocols, respectively.

Figure 1 shows the initial mass activity and stability of mass activity after 30,000 potential cycles (0.6–1.0 V) for the 30% Pt\*/A-CCS catalyst. At 0.9  $V_{iR-free}$ , the catalyst showed an initial mass activity of 0.41 A/mg<sub>Pt</sub> and 46% loss after 30,000 cycles. The commercial 30% Pt/C catalyst showed a 68% loss (Table 2) after 30,000 cycles. The ECSA loss for the Pt\*/A-CCS catalyst is 25% (decreased from 24.1 m<sup>2</sup>/g<sub>Pt</sub> to 18 m<sup>2</sup>/g<sub>Pt</sub>) while the commercial 30% Pt/C catalyst showed an 80% loss after 30,000 cycles.

The H<sub>2</sub>-air fuel cell performance of the 30% Pt\*/A-CCS catalyst subjected to 0.6–1.0 V potential cycles (30,000 cycles) is shown in Figure 2A (iR-corrected cell voltage vs. current) and Figure 2B (cell voltage vs. current). In H<sub>2</sub>-air, the fuel cell exhibited an initial current density of 1.55 A/cm<sup>2</sup> at 0.6 V<sub>iR-free</sub> with a rated power density of 0.19 g<sub>PGM</sub>/kW. The catalyst showed 35 mV (iR-free) loss and 32 mV (cell voltage) loss at 0.8 A/cm<sup>2</sup> after 30,000 cycles (0.6–1.0 V). The commercial Pt/C catalyst showed no activity at 0.8 A/cm<sup>2</sup> after 30,000 potential cycles between 0.6 V and 1.0 V. The catalyst durability results of the 30% Pt\*/A-CCS and commercial Pt/C catalysts are compared in Table 2.

Figure 3A (iR-corrected cell voltage vs. current) and Figure 3B (cell voltage vs. current) show the H<sub>2</sub>-air fuel cell performance of 30% Pt\*/A-CCS catalyst subjected to 1.0–1.5 V potential cycles (5,000 cycles). The 30% Pt\*/A-CCS catalyst exhibited an initial mass activity of 0.41 A/mg<sub>Pt</sub> and 53% loss after 5,000 cycles. The H<sub>2</sub>-air fuel cell performance showed an initial current density of 1.4 A/cm<sup>2</sup> at 0.6 V<sub>iR-free</sub> and 1.45 A/cm<sup>2</sup> after 5,000 cycles. The catalyst showed 10 mV gain (iR-free) and 29 mV gain (cell voltage) at 1.5 A/cm<sup>2</sup> after 5,000 cycles (1.0–1.5 V). The ECSA loss is 24% (decreased from 21 m<sup>2</sup>/g<sub>Pt</sub> to 16 m<sup>2</sup>/g<sub>Pt</sub>). The commercial



Mass activity (A/mg<sub>PGM</sub>)

**FIGURE 1.** Stability of mass activity of Pt\*/A-CCS catalyst subjected to 30,000 potential cycles between 0.6 V and 1.0 V at 50 mV/s. The catalyst loading is 0.1 mg<sub>PGM</sub>/cm<sup>2</sup> on both the anode and cathode electrodes. The fuel cell operating conditions are:  $H_2/O_2$  (2/9.5 stoic.), 80°C, 100% relative humidity (RH), 150 kPa<sub>abs</sub> back pressure. Nafion<sup>®</sup> NRE 212 membrane is used as the electrolyte.

Pt/C catalyst showed very high mass activity loss (74%), 92% ECSA loss, and no activity at 1.5 A/cm<sup>2</sup> after 5,000 potential cycles between 1.0 V and 1.5 V. The support stability test results for the 30% Pt\*/A-CCS and commercial Pt/C catalysts are summarized in Table 2. According to Reiser et al. [20], the cathode interfacial potential difference can reach ~1.5 V due to the H<sub>2</sub>-air front in the anode compartment during startup/shutdown and carbon corrosion is an inevitable parasitic reaction at these high potentials. However, the 1.0–1.5 V potential cycling experimental results of the 30% Pt\*/A-CCS catalyst show that the USC-developed A-CCS

| Catalyst/Test                        | Particle Size<br>(nm) | Mass Activity (A/mg <sub>Pt</sub> ) |                                                        | ECSA (m²/g <sub>Pt</sub> ) |                                                       | Cell Voltage Loss (mV)                                              |                                                                     |
|--------------------------------------|-----------------------|-------------------------------------|--------------------------------------------------------|----------------------------|-------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|
|                                      |                       | Initial                             | Final                                                  | Initial                    | Final                                                 | ΔV <sub>Cell</sub>                                                  | ΔV <sub>iR-free</sub>                                               |
| Pt*/A-CCC<br>Support Stability       | 4~5                   | 0.41                                | <u>0.19</u><br>(53% loss)<br>(5,000 cycles)            | <u>21</u>                  | <u>16</u><br>( <u>24% loss</u> )<br>(5,000 cycles)    | <u>0 (29 mV gain)</u><br>at 1.5 A/cm <sup>2</sup><br>(5,000 cycles) | <u>0 (10 mV gain)</u><br>at 1.5 A/cm <sup>2</sup><br>(5,000 cycles) |
| Catalyst Durability                  | 4~5                   | 0.41                                | <u>0.22</u><br>( <u>46% loss)</u><br>(30,000 cycles)   | <u>24</u>                  | <u>18</u><br>( <u>25% loss</u> )<br>(30,000 cycles)   | <u>32</u><br>at 0.8 A/cm²<br>(30,000 cycles)                        | <u>35</u><br>at 0.8 A/cm²<br>(30,000 cycles)                        |
| Commercial Pt/C<br>Support Stability | 2.2                   | 0.18                                | <u>0.047</u><br>( <u>74% loss</u> )<br>(5,000 cycles)  | 68                         | <u>5.4</u><br>( <u>92% loss</u> )<br>(5,000 cycles)   | No activity<br>(5,000 cycles)                                       | No activity<br>(5,000 cycles)                                       |
| Catalyst Durability                  | 2.2                   | 0.18                                | <u>0.057</u><br>( <u>68% loss</u> )<br>(30,000 cycles) | 68                         | <u>13.6</u><br>( <u>80% loss</u> )<br>(30,000 cycles) | No activity<br>(30,000 cycles)                                      | No activity<br>(30,000 cycles)                                      |

TABLE 2. Summary of Support Stability Test (5,000 Potential Cycles between 1.0 V and 1.5 V) and Catalyst Durability Test (30,000 Potential Cycles between 0.6 V and 1.0 V) for Pt\*/A-CCS and Commercial Pt/C Catalysts



**FIGURE 2.** Comparison of H<sub>2</sub>-air fuel cell performance of 30% Pt<sup>'</sup>/A-CCS catalyst subjected to 30,000 potential cycles between 0.6 V and 1.0 V at 50 mV/s. (A) iR-corrected cell voltage vs. current and (B) cell voltage vs. current. The catalyst loading is 0.1 mg<sub>PGM</sub>/cm<sup>2</sup> on both the anode and cathode electrodes. The fuel cell operating conditions are: H<sub>2</sub>-air (2/2 stoic.), 80°C, 60% RH, 170 kPa<sub>abs</sub> back pressure. Nafion<sup>®</sup> NRE 212 membrane is used as the electrolyte.

support is highly stable at high potentials when compared to the carbon support used in commercial Pt/C catalyst. For the first time, by developing a breakthrough stable carbon-based composite at the Center for Electrochemical Engineering at USC, we have shown excellent support stability under 1.0–1.5 V potential cycling conditions for the Pt\*/A-CCS catalyst.

#### **CONCLUSIONS AND FUTURE DIRECTIONS**

#### **Conclusions for Pt\*/A-CCS Catalyst**

 Accomplished initial mass activity of 0.41 A/mg<sub>PGM</sub> and loss of mass activity of 46% after 30,000 cycles (0.6–1.0 V)



**FIGURE 3.** Comparison of H<sub>2</sub>-air fuel cell performance of 30% Pt<sup>'</sup>/A-CCS catalyst subjected to 5,000 potential cycles between 1.0 V and 1.5 V at 500 mV/s. (A) iR-corrected cell voltage vs. current and (B) cell voltage vs. current. The catalyst loading is 0.1 mg<sub>PGM</sub>/cm<sup>2</sup> on both the anode and cathode electrodes. The fuel cell operating conditions are: H<sub>2</sub>/air (2/2 stoic.), 80°C, 50% RH, 170 kPa<sub>abs</sub> back pressure. Nafion<sup>®</sup> NRE 212 membrane is used as the electrolyte.

- Accomplished potential loss of 35 mV (iR-free) and 32 mV (cell voltage) loss at 0.8 A/cm<sup>2</sup> after 30,000 cycles (0.6–1.0 V)
- Accomplished 25% ECSA loss after 30,000 cycles (0.6–1.0 V)
- The Pt\*/A-CCS showed excellent support stability after 5,000 cycles (1.0–1.5 V)
  - Potential gain of ~10 mV (iR-corrected cell voltage) was accomplished at 1.5 A/cm<sup>2</sup> after 5,000 cycles

- Accomplished 53% mass activity loss and 24% ECSA loss after 5,000 cycles (1.0–1.5 V)
- Accomplished (rated) initial power density of 0.19 g<sub>PGM</sub>/kW

#### **Future Anticipated Accomplishments**

- Our studies showed the formation of an ordered tetragonal Pt-Co phase, while the disorder to ordered Pt-Co phase ratio increased with increasing pyrolysis temperature. The catalyst performance was found to depend on the disordered/ordered Pt-Co structures (Pt\*/A-CCS).
  - Detailed studies will be carried out to optimize the performance of Pt\*/A-CCS with the structural properties of Co-doped Pt.
  - Structure-property performance relationships will be evaluated for different Pt-Co ratios which result in structures with different degrees of formation of compressive Pt-lattice structure.
  - A mathematical model developed at USC will be used to optimize the ratio of ordered and disordered Pt-Co phases.
- Further studies will be carried out to increase the H<sub>2</sub>air fuel cell performance of the Pt\*/A-CCS catalyst by controlling the hydrophilic/hydrophobic properties of A-CCS. The goal is to eliminate the eventual flooding of the support during 1.0–1.5 V cycling.
- The catalyst which best achieves the 2017 DOE technical targets for electrocatalysts and catalyst supports will be selected.
- Reproducibility studies of the selected catalyst in 25 cm<sup>2</sup> and 50 cm<sup>2</sup> MEAs will be conducted.
- High-volume production procedures for the A-CCS support and Pt\*/A-CCS catalyst will be optimized.
- Cost reduction will be achieved by:
  - Further decreasing the PGM loading.
  - Developing cost-effective synthesis procedures that eliminate the chemical leaching process during Pt\*/A-CCS synthesis.
  - Optimizing of the Pt/Co ratio and decreasing the annealing temperature and reaction time.

#### Deliverables

**1.** Supply of 25 and 50 cm<sup>2</sup> MEAs for independent evaluation at NREL by the end of December 2015.

## **FY 2015 PUBLICATIONS**

**1.** Wonsuk Jung, Tianyuan Xie, Taekeun Kim, Prabhu Ganesan, Branko N. Popov, "Highly Active and Durable Co-Doped Pt/CCC Cathode Catalyst for Polymer Electrolyte Membrane Fuel Cells," *Electrochim. Acta*, **167**, (2015) 1–12.

**2.** T. Kim, T. Xie, W.S. Jung, F. Gadala-Maria, P. Ganesan, B.N. Popov, "Development of Catalytically Active and Highly Stable Catalyst Supports for Polymer Electrolyte Membrane Fuel Cells," *J. Power Sources*, **273**, (2015) 761–774.

**3.** T. Xie, W.S. Jung, T. Kim, P. Ganesan, B.N. Popov, "Development of Highly Active and Durable Hybrid Cathode Catalysts for Polymer Electrolyte Membrane Fuel Cells," *J. Electrochem. Soc.*, **161** (2014) F1489–F1501.

## REFERENCES

**1.** N.P. Subramanian, S.P. Kumaraguru, H.R. Colon-Mercado, H. Kim, B.N. Popov, T. Black, and D.A. Chen, "Studies on Co-Based Catalysts Supported on Modified Carbon Substrates for PEMFC Cathodes," *J. Power Sources*, **157** (2006) 56–63.

**2.** R.A. Sidik, A.B. Anderson, N.P. Subramanian, S.P. Kumaraguru, and B.N. Popov, "O<sub>2</sub> Reduction on Graphite and Nitrogen-Doped Graphite: Experiment and Theory," *J. Phys. Chem. B*, **110** (2006) 1787–1793.

**3.** X. Li, H.R. Colon-Mercado, G. Wu, J.-W. Lee, B.N. Popov, "Development of Method for Synthesis of Pt-Co Cathode Catalysts for PEM Fuel Cells," *Electrochem. Solid-State Lett.*, **10** (2007) B201–B205.

**4.** Nallathambi, Vijayadurga; Lee, Jong-Won; Kumaraguru, Swaminatha P.; Wu, Gang; Popov, Branko N., "Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM Proton Exchange Membrane fuel cells," *J. Power Sources*, **183** (2008) 34–42.

**5.** Subramanian, Nalini P.; Li, Xuguang; Nallathambi, Vijayadurda; Kumaraguru, Swaminatha P.; Colon-Mercado, Hector; Wu, Gang; Lee, Jong-Won; Popov, Branko N., "Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells," *J. Power Sources*, **188** (2009) 38–44.

**6.** Liu, Gang; Li, Xuguang; Ganesan, Prabhu; Popov, Branko N., "Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon," *Appl. Catal. B: Environmental*, **93** (2009) 156–165.

**7.** Li, Xuguang; Park, Sehkyu; Popov, Branko N., "Highly stable Pt and PtPd hybrid catalysts supported on a nitrogen-modified carbon composite for fuel cell application," *J. Power Sources*, **195** (2010) 445–452.

**8.** Liu, Gang; Li, Xuguang; Ganesan, Prabhu; Popov, Branko N., "Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells," *Electrochim. Acta*, **55** (2010) 2853–2858.

**9.** Xuguang Li, Gang Liu, Branko N. Popov, "Activity and stability of non-precious metal catalysts for oxygen reduction in acid and alkaline electrolytes," *J. Power Sources*, **195** (2010) 6373–6378.

**10.** B.N. Popov, X. Li, and J.W. Lee, "Power source research at USC: Development of advanced electrocatalysts for polymer electrolyte membrane fuel cells," *Int. J. Hyd. Energy*, **36** (2011) 1794–1802.

**11.** Xuguang Li, Branko N. Popov, Takeo Kawahara, Hiroyuki Yanagi, "Non-precious metal catalysts synthesized from precursors of carbon, nitrogen, and transition metal for oxygen reduction in alkaline fuel cells," *J. Power Sources*, 196 (2011), 1717–1722.

**12.** Gang Liu, Xuguang Li, Jong-Won Lee, and Branko Popov, "A Review of the Development of Nitrogen Modified Carbon-based Catalyst for Oxygen Reduction at USC," *Catalysis Science & Technology*, 1, (2011) 207–217.

**13.** Branko N. Popov, Tianyuan Xie, Taekeun Kim, Won Suk Jung, Joseph C. Rotchford, Akos Kriston, and Prabhu Ganesan, "Development of Ultra-Low Loading Pt Alloy Cathode Catalyst for PEM Fuel Cells," *ECS Trans.*, **58** (2013) 761–778.

**14.** Ákos Kriston, Tianyuan Xie, David Gamliel, Prabhu Ganesan, Branko N. Popov, "Effect of Ultra-Low Pt Loading on Mass Activity of PEM Fuel Cells," *J. Power Sources*, **243** (2013) 958–963.

**15.** Ákos Kriston, Tianyuan Xie, Prabhu Ganesan, Branko N. Popov, "Effect of Pt Loading on Mass and Specific Activity in PEM Fuel Cells," *J. Electrochem. Soc.*, **160** (2013) F406–F412. **16.** Åkos Kriston, Tianyuan Xie, and Branko N. Popov, "Impact of Ultra-low Platinum Loading on Mass Activity and Mass Transport in  $H_2$ -Oxygen and  $H_2$ -Air PEM Fuel Cells," *Electrochim. Acta*, **121** (2014) 116–127.

**17.** Wonsuk Jung, Tianyuan Xie, Taekeun Kim, Prabhu Ganesan, Branko N. Popov, "Highly Active and Durable Co-Doped Pt/CCC Cathode Catalyst for Polymer Electrolyte Membrane Fuel Cells," *Electrochim. Acta*, **167**, (2015) 1–12.

**18.** T. Kim, T. Xie, W.S. Jung, F. Gadala-Maria, P. Ganesan, B.N. Popov, "Development of Catalytically Active and Highly Stable Catalyst Supports for Polymer Electrolyte Membrane Fuel Cells," *J. Power Sources*, **273**, (2015) 761–774.

**19.** T. Xie, W.S. Jung, T. Kim, P. Ganesan, B.N. Popov, "Development of Highly Active and Durable Hybrid Cathode Catalysts for Polymer Electrolyte Membrane Fuel Cells," *J. Electrochem. Soc.*, **161** (2014) F1489–F1501.

**20.** C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D. Yang, M.L. Perry, T.D. Jarvi, "A Reverse-Current Decay Mechanism of Fuel Cells," *Electrochem. Solid-State Lett.* **8** (2005) A273–A276.