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HydroGEN Seedling: Computationally Accelerated 
Discovery and Experimental Demonstration of  
High-Performance Materials for Advanced Solar 
Thermochemical Hydrogen Production 

Overall Objectives 
• Utilize materials informatics and machine 

learning to predict materials for solar 
thermochemical water splitting (STWS) and 
demonstrate the effectiveness of our materials-
by-design approach by experimentally 
demonstrating materials with computationally 
predicted thermodynamic and kinetic 
properties. 

• Utilize materials-by-design approach to rapidly 
computationally prototype new STWS 
materials and demonstrate materials with 
improved performance. 

• Computationally prototype doped metal oxides 
for thermodynamic and kinetic viability and 
experimentally demonstrate materials with 
improved hydrogen productivity, reaction 
kinetics, and durability. 

Fiscal Year (FY) 2018 Objectives  
• Utilize advanced machine-learning techniques 

to enable the prediction of the perovskite 

                                                      
1 https://www.energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22  

crystal structures (polymorphs) relevant to 
STWS conditions. 

• Screen materials for thermodynamic viability 
based on stability, oxygen vacancy formation 
energy (Ev), and extent of reduction (δ). 

• Develop and utilize an accelerated pseudo 
transition state approach and machine-learned 
models to rapidly computationally screen 
materials for kinetic viability. 

• Experimentally demonstrate the durability and 
thermodynamic and kinetic water splitting 
behavior of new materials predicted from our 
computational screening using the 
thermogravimetric analyzer with differential 
scanning calorimeter (TGA/DSC) and 
stagnation flow reactor (SFR). 

• Complete an annual status report comparing 
results from the different demonstrations. 

Technical Barriers 
This project addresses the following technical 
barriers from the Hydrogen Production section of 
the Fuel Cell Technologies Office Multi-Year 
Research, Development, and Demonstration Plan1: 

(S) High-Temperature Robust Materials. 

Technical Targets 
This project has contributed toward progress in 
meeting the target for “Annual Reaction Material 
Cost per TBD H2” from the Fuel Cell 
Technologies Office Multi-Year Research, 
Development, and Demonstration Plan for solar-
driven high-temperature thermochemical hydrogen 
production. This metric incorporates active 
material improvements through “decreased 
material usage, improved cycle time, and increased 
material lifetime.” Specifically, this project is 
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working toward the following goals to hit this 
target:  

• Hydrogen productivity: >350 µmol/g/cycle 

• Operating temperature: Tred ≤1,450°C and ΔT 
≤400°C 

• Cycle times: <10 minutes 

• Stability: <10% decrease in reactivity between 
cycles 100 and 200. 

FY 2018 Accomplishments 
• Developed two machine-learned descriptors 

that significantly narrow the search space for 
candidate materials to accelerate the screening 
of more than 1,000,000 perovskite structures. 

• Advanced the capability of materials screening 
for kinetic properties by developing a pseudo 
transition state identification approach and 
predicted rate-limiting step in hydrogen 
evolution reaction. 

• Identified an important thermodynamic 
screening parameter necessary for determining 
a material’s water-splitting ability. 
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INTRODUCTION  
STWS provides a promising route for efficient conversion of solar energy to hydrogen fuel; however, despite 
the significant number of materials that have been examined, an optimal material to drive this process has yet 
to be developed. This research focuses on developing a powerful new approach for materials discovery that 
combines quantum mechanical and machine-learned models with experimental feedback to accelerate the 
development of new, durable redox materials. During this year, the team has developed a machine-learned 
descriptor that improves the prediction of single and double perovskite stability, eliminating the need to use 
expensive first-principles density functional theory (DFT) quantum mechanical calculations, significantly 
reducing the number of potential candidate materials and reducing the computational expense of stability 
predictions from hours to milliseconds per material. The team has also developed a second machine-learned 
descriptor that predicts thermodynamic stability at relevant high-temperature conditions (>1,300°C), which 
further reduces the computational expense of accurately prototyping new materials and considerably narrows 
the pool of candidate materials requiring experimental testing. In addition to reducing the materials space by 
machine-learned descriptors, the team has also made significant advancements in high-throughput screening of 
materials for kinetic and thermodynamic water-splitting viability. 

APPROACH  
This project will focus on the design and demonstration of mixed metal oxides for STWS with a predominant 
emphasis on perovskites and spinels. The redox stability of these materials at conditions at which they undergo 
an oxygen-vacancy-mediated STWS mechanism will be evaluated, and their thermodynamic and kinetic 
properties will be tuned through compositional (doping) control. We will ensure properties are evaluated with 
the correct topology (structure and coordination) at STWS conditions. To achieve DOE targets, materials will 
be designed with low thermal reduction temperatures (<1,450°C), high hydrogen production capacity (>350 
µmol H2/g/cycle), material stability and reactivity over many cycles (<10% loss in hydrogen production from 
cycles 100 to 200), and rapid reduction and oxidation kinetics (cycle times <10 minutes). This work will 
consist of four tasks to develop novel water splitting materials.  

We will:  

1. Develop machine-learned models for predicting phase transitions in perovskites.  

2. Screen active materials for thermodynamic viability. 

3. Screen active materials for kinetic viability.  

4. Experimentally test promising materials for redox cycling durability and thermodynamic and kinetic 
performance.  

RESULTS  
During FY 2018, the team developed a machine-learned descriptor that improves the prediction of single- and 
double-perovskite stability from 74% to 92% accuracy (Figure 1), eliminating the need to use first-principles 
DFT calculations for >1,000,000 perovskite structures. This descriptor significantly focuses the material space 
and reduces the computational expense of stability predictions. 

A decision tree classifier determines that the optimal bounds for perovskite formability using the Goldschmidt 
tolerance factor, t, are 0.825 <t <1.059, which yields a classification accuracy of 74% for 576 experimentally 
characterized ABX3 solids (Figure 1a). The new tolerance factor (τ) achieves 92% classification accuracy on 
the set of 576 ABX3 solids based on perovskite classification for τ <4.18, with this decision boundary 
identified using a one-node decision tree (Figure 1b). This result indicates that this model is truly predictive 
and allows for significant generalizability to predicting experimental realization for single and double 
perovskites that are yet to be discovered.  
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Figure 1. Assessing the performance of the improved tolerance factor. (A) A decision tree classifier determines that the 
optimal bounds for perovskite formability using the Goldschmidt tolerance factor, t, are 0.825 <t <1.059, which yields a 

classification accuracy of 74% for 576 experimentally characterized ABX3 solids. (B) τ achieves 92% classification accuracy 
on the set of 576 ABX3 solids based on perovskite classification for τ <4.18, with this decision boundary identified using a 
one-node decision tree. The largest value of τ in the experimental set of 576 compounds is 181.5; however, all points with 
τ >13 are correctly labeled as nonperovskite and not shown to highlight the decision boundary. The outlying compounds at 
τ >10 that are labeled perovskite yet have large τ are PuVO3, AmVO3, and PuCrO3, which may indicate poorly defined radii 

or incorrect experimental characterization. 

During this year, a second machine-learned descriptor was developed that predicts thermodynamic stability at 
relevant high-temperature conditions (>1,300°C). The sure independence screening and sparsifying operator 
(SISSO) approach was used to identify a simple and highly accurate descriptor for G(T). The current descriptor 
for the G(T) requires only temperature, chemical formula, and DFT-calculated density to reproduce 
experimental G(T) with errors of ~40 meV/atom (Figure 2). 

Figure 2a shows the performance of the SISSO-learned descriptor on the training set and Figure 2b shows 
distribution of residuals between the SISSO-learned descriptor and experiment on the training set. Combining 
this high-throughput model for the prediction of G(T) with tabulated and readily available DFT-calculated 
ΔHf and experimental Gibbs energies for the elements enables the rapid prediction of ΔGf(T) from a single 
DFT total energy calculation. Thus, reaction energetics, thermochemical equilibrium product distributions, 
and temperature-dependent compound stability can be assessed for the millions of structures currently 
compiled in materials databases. This unprecedented ability to rapidly predict reaction equilibria for 
reactions involving solid compounds is illustrated in Figure 3 for a small set of example reactions. 

Figure 3a shows comparison of experimental reaction energetics (labels) to those predicted using the machine-
learned descriptor for G(T) (dashed curves) and Figure 3b shows reaction product distributions between MoO2, 
Mo2N, N2, H2, H2O, and NH3 based on Gibbs energy minimization subject to molar conservation and fixed 
pressure of 1 atm. In both figures, “pred” applies the SISSO-learned descriptor to G(T) of the solid phases and 
experimental data for all other components. This model can be trivially applied to all perovskite oxides under 
consideration to assess the stability (or metastability) as a function of temperature, and further reduce the space 
of compounds that require more sophisticated (e.g., defect) calculations.  
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Figure 2. Descriptor performance. Performance of the SISSO-learned descriptor on the training set. MAD is the mean 
absolute deviation, RMSD the root mean square deviation, N the number of points shown, μ the mean deviation and σ the 

standard deviation. The curved lines are normal distributions constructed from μ and σ. 

 

Figure 3. High-throughput reaction engineering. (a) A comparison of experimental reaction energetics (labels) to those 
predicted using the machine-learned descriptor for G(T) (dashed curves). (b) Reaction product distribution between MoO2, 

Mo2N, N2, H2, H2O, and NH3 based on Gibbs energy minimization subject to molar conservation and fixed pressure of 1 
atm. In both figures, “pred” applies the SISSO-learned descriptor to G(T) of the solid phases and experimental data for all 

other components. 

In addition to focusing the chemical space by machine-learned descriptors, the team has made significant 
advancements in high-throughput screening of materials for kinetic and thermodynamic viability. For the 
thermodynamic screening, the team utilized the machine-learned model developed for perovskite stability to 
screen >1,000,000 potential perovskite materials down to ~27,000 stable materials to be further evaluated 
using DFT. All of the 328 stable ternary (ABO3) perovskites and 425 stable double (A2BB’O6) perovskites 
were evaluated for STWS based on the oxygen vacancy formation energy. Further work is now being 
conducted to evaluate these materials based on their stability at elevated temperatures using the machine-
learned model for free energy G(T) described above. The team also evaluated the effect of charged defects on 
the predicted thermodynamic behavior of STWS materials. This study was completed in conjunction with Dr. 
Stephan Lany at the National Renewable Energy Laboratory utilizing the HydroGEN consortium 
computational node “First Principles Materials Theory for Advanced Water Splitting Pathways.” Through this 
work the team has demonstrated that charged antisite-vacancy defect pairs are critical for understanding the 
water splitting ability in hercynite. Future work will involve utilizing these charged and antisite defect 
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calculations to complete a full thermodynamic model for the equilibrium defect concentration at relevant 
temperatures in hercynite and hercynite alloys. For the kinetic screening, the team has identified the rate-
limiting step in the hydrogen evolution reaction and developed accelerated pseudo transition state 
identification approaches. The rate-limiting step was identified from an initial screening of 23 
perovskite/spinel materials. The full reaction pathway for the hydrogen and oxygen evolution surface reactions 
was evaluated in addition to the bulk kinetics for all 23 materials. The pseudo transition state identification 
approaches we developed significantly accelerate the kinetic screening of materials. These approaches involve 
estimating an upper/lower bound on transition state energies, utilizing atomic potentials to estimate transition 
state geometries, and recent developments allow the use of machine-learned models for rapid materials 
screening. These advancements not only limit the number of calculations needed to screen for kinetic viability 
but also significantly reduce the computation expense attributed to costly ab initio transition state calculations. 
Experimentally, the activity of four transition metal–hercynite alloys was measured in a stagnation flow 
reactor. These alloys produced >200 µmol H2/g at reduction temperatures of 1,450°C. The Mn-hercynite alloy 
shows the highest hydrogen production as well as an improved peak rate over pure hercynite. The 
experimentally measured peak rates were accurately matched against computational predictions.  

CONCLUSIONS AND UPCOMING ACTIVITIES  
The materials-by-design approach has thus far been developed to (1) significantly narrow the candidate 
materials space, (2) predict energetics at relevant high-temperature conditions, (3) increase the capabilities of 
state-of-the-art high-throughput kinetic screening, and (4) identify relevant thermodynamic screening 
parameters. The initial success of this approach has been demonstrated for transition metal–hercynite alloys by 
correctly rank ordering the experimental peak hydrogen production rate of four materials by the computational 
kinetic results. Additionally, four materials producing >200 μmol H2/g at reduction temperatures ≤1,450°C and 
temperature swings ≤400°C were demonstrated.  

Future work by the University of Colorado team includes: 

• Utilizing the charged and antisite defect calculation in a thermodynamic model to compute the 
equilibrium defect concentrations at relevant temperatures and pressures. 

• Screening candidate perovskite materials using free energy model for stability at elevated temperatures. 

• Continuing deployment of pseudo transition state approaches for rapid kinetic screening that will feed 
into the development of machine-learned models.  
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