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HyMARC Seedling: Optimized Hydrogen Adsorbents via 
Machine Learning and Crystal Engineering 

Overall Objectives 
• Apply machine learning (ML) techniques to 

design and experimentally demonstrate new 
metal-organic frameworks (MOFs) having 
usable volumetric capacities exceeding 50 g 
H2/L (single-crystal/pressure swing) without 
compromising gravimetric capacity, kinetic 
performance, or reversibility.  

• Control MOF crystal morphology and 
crystallite size distribution to increase packing 
density of target high-capacity MOF by at least 
30% (compared to its powder tap density) with 
less than 15% decrease in gravimetric 
performance. 

Fiscal Year (FY) 2018 Objectives  
• Identify ranges for four MOF crystallographic 

properties (surface area, density, pore volume, 
and porosity) consistent with usable volumetric 
capacity of at least 40 g H2/L and usable 
gravimetric capacity of at least 7 wt% 
(assuming an isothermal pressure swing 

                                                      
1 https://www.energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22  

between 100 and 5 bar at 77 K) based on 
single-crystal density.  

• Demonstrate that the identified ranges are 
within the realm of possibility for the 
development of new MOFs, and thus provide a 
pathway for meeting the DOE storage targets. 

• Demonstrate the ability to predict usable 
capacity of an arbitrary MOF to within 85% of 
grand canonical Monte Carlo (GCMC) capacity 
using only crystal structure as input. 

• Identify at least two additives to be employed 
during MOF synthesis that are capable of 
altering crystallite morphology from cubes to 
octahedra. 

Technical Barriers 
This project addresses the following technical 
barriers from the Hydrogen Storage section of the 
Fuel Cell Technologies Office Multi-Year 
Research, Development, and Demonstration Plan1: 

(A) System Weight and Volume 

(B) System Cost 

(C) Efficiency. 

Technical Targets 
Insights gained from this study can be applied 
toward the development of materials that aim to 
meet the following DOE 2020 hydrogen storage 
targets: 

• Cost: $333/kg H2 

• Gravimetric capacity: 4.5 wt% 

• Volumetric capacity: 30 g H2/L 

The outcomes of this project contribute to the 
optimization and assessment of hydrogen storage 
materials by identifying higher-capacity hydrogen 
adsorbents, in particular adsorbents that maximize 
volumetric hydrogen density. This project also 
provides input to models that project the 
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performance of these materials at the system level 
by quantifying and optimizing the hydrogen 
storage media packing density.  

FY 2018 Accomplishments  
• Demonstrated the ability to predict four 

crystallographic properties of an arbitrary MOF 
that correspond to specified usable gravimetric 
and volumetric hydrogen capacities.  

• Demonstrated that the ranges of predicted 
crystallographic properties are within the realm 
of possibility for the development of new 
MOFs. 

• Identified three additives capable of controlling 
morphology of MOF-5 from cubes to 
octahedra. 

• Demonstrated control over MOF particle size 
from a few microns to 2 mm by varying the 
metal:ligand ratio. The effect of temperature 
and time on MOF particle size distributions 
was also quantified. 
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INTRODUCTION  
A high-capacity, low-cost method for storing hydrogen remains one of the primary barriers to the widespread 
commercialization of fuel cell vehicles. Although many storage technologies have been proposed, storage via 
adsorption remains one of the more promising approaches due to its fast kinetics, facile reversibility, and high 
gravimetric densities. Adsorbents struggle, however, in two key measures: volumetric density and operating 
temperature. For example, it is well known that high-surface-area adsorbents such as MOFs can achieve high 
gravimetric densities. Nevertheless, high volumetric densities are uncommon in these materials, and it has 
recently been suggested that total volumetric density and gravimetric density are inversely related beyond a 
threshold surface area. In the case of operating temperatures, the relatively weak enthalpy of hydrogen 
adsorption implies that high hydrogen densities are possible only at cryogenic temperatures.  

Although an ideal adsorbent would overcome both of these shortcomings, it is important to recognize that 
volumetric density and operating temperature are controlled by different factors: the former depends upon the 
adsorbent’s structure whereas the latter depends on the chemistry of the hydrogen-adsorbent interaction. 
Therefore, distinct approaches are needed to address these independent issues. While some effort has 
previously been devoted to increasing ∆H (e.g., MOFs with open metal sites), attempts to increase volumetric 
densities have received much less attention. This is unfortunate, as analysis by the HSECoE has indicated that 
vehicle range is highly sensitive to volumetric density. Consequently, the development of adsorbents that 
simultaneously achieve high volumetric and gravimetric hydrogen densities—while maintaining reversibility 
and fast kinetics—would constitute a significant advance. Moreover, these materials would serve as logical 
starting points for follow-on efforts aimed at increasing the operating temperature. 

APPROACH  
This project aims to overcome volumetric limitations associated with physisorptive hydrogen storage at both 
the materials and system level. This goal will be achieved using a combination of computational techniques 
and experimental synthesis and testing. Our efforts will target storage media based on metal-organic 
frameworks (MOFs), a class of hydrogen adsorbents with highly tunable properties.  

At the materials level, machine learning (ML) methods will be applied to our database of 476,007 real and 
hypothetical MOFs. This analysis will guide the discovery of new compounds that can break through the so-
called “volumetric ceiling”. This performance ceiling was identified in our prior screening studies; it reveals 
that no known MOFs can surpass a usable volumetric capacity of 40 g H2/L (assuming an isothermal pressure 
swing between 100 and 5 bar at 77 K). In contrast to the conventional approach to MOF discovery, where 
capacity is predicted from a known crystal structure, this project aims to invert this process and “reverse 
engineer” optimal MOFs with the aid of machine learning. The most promising compounds will be synthesized 
and assessed experimentally with respect to their usable hydrogen capacities.  

At the system level, we will develop crystal growth and processing techniques that result in MOF-based 
adsorbent beds with low void fractions. Packing inefficiencies have the potential to negate improvements in 
volumetric performance achieved at the materials level. This project aims to close this performance gap by 
developing synthetic procedures that optimize particle morphology and size distribution.  

RESULTS  
Table 1 summarizes the inputs and outputs used in developing ML models for predicting the range of 
crystallographic properties that correlate with specified usable hydrogen capacities. Usable gravimetric and 
volumetric capacities (at 77 K assuming a pressure swing between 5 and 100 bar) determined from grand 
canonical Monte Carlo (GCMC) calculations were used as ML input descriptors, while the crystallographic 
properties were the target outputs. 

In total, data from 96,402 MOFs were used for training and testing the ML models. The extremely randomized 
trees (ERT) [2] supervised ML algorithm was trained and tested on GCMC-calculated capacities using the 
Scikit-learn [3] python package. The ERT model was identified as being the most accurate ML algorithm. ERT 
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models were trained using data from 72,300 randomly selected MOFs from the GCMC data set. The remaining 
GCMC data for 24,102 MOFs were used to assess the performance of the ML model. The tunable parameters 
of the ERT model were optimized via a randomized grid search over plausible parameter values with 10-fold 
cross validation using the RandomizedSearchCV and GridSearchCV functions as implemented in Scikit-learn 
[3]. Table 2 summarizes the accuracy of ML predictions of crystallographic properties of MOFs using four 
different metrics: R2 (correlation coefficient), AUE (average unsigned error), RMSE (root-mean-square error), 
and Kendall τ.  

Table 1. ML Input Descriptors and Target Output Properties 

ML Input Descriptor: 
Hydrogen storage capacity calculated via GCMC  

ML Target Output: 
Crystallographic properties calculated via the 
zeo++ code [1] 

Usable gravimetric (in wt%) and volumetric (in g H2/L) 
capacities at 77 K for a pressure swing between 5 and 
100 bar 

(1) Single crystal density (in g/cm3) 
(2) Pore volume (in cm3/g)  
(3) Void fraction (unit free)  
(4) Gravimetric surface area (in m2/g) 
(5) Volumetric surface area (in m2/cm3)  
(6) Largest cavity diameter (in Å) 
(7) Pore limiting diameter (in Å) 

ML models are trained using inputs to reproduce outputs. 
 

Table 2. Accuracy of ML Predictions of MOF Crystallographic Properties 

ML Predicted MOF Crystallographic 
Properties R2 AUE RMSE Kendall τ 

Single crystal density (g/cm3) 0.980 0.010 (g/cm3) 0.056 (g/cm3) 0.984 
Pore volume (cm3/g) 0.998 0.026 (cm3/g) 0.035 (cm3/g) 0.966 
Void fraction 0.947 0.017 0.029 0.904 
Gravimetric surface area (m2/g) 0.920 402 (m2/g) 539 (m2/g) 0.906 

 

Correlations between ML predictions and zeo++ calculations for four crystallographic properties of MOFs are 
shown in Figure 1. These properties include single-crystal density, pore volume, void fraction, and gravimetric 
surface area. These data demonstrate the ability to predict these properties to within 92% to 99% accuracy.  
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Figure 1. Comparison between ML predictions and zeo++/GCMC calculations of four crystallographic properties of 24,102 

MOFs. ML models were trained using GCMC-calculated usable capacities of 72,300 MOFs as input descriptors.  

Figure 2 illustrates ML predictions for four crystallographic descriptors as functions of usable gravimetric and 
volumetric capacities. The left y-axis represents input usable volumetric capacity while the right y-axis 
indicates values for a given crystallographic property. Input capacities (7 wt% and 40 g H2/L) are indicated by 
white-filled black circles in each of the plots; their corresponding ML-predicted crystallographic properties are 
shown by filled red circles. Green dots represent the ML-predicted crystallographic properties of MOFs 
corresponding to the input capacities represented by the pink region. Table 3 summarizes the ML predictions 
of four MOF crystallographic properties corresponding to usable gravimetric and volumetric capacities of 7 
wt% and 40 g H2/L, respectively.  
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Figure 2. ML-predicted (a) single-crystal density, (b) pore volume, (c) void fraction, and (d) gravimetric surface area as a 
function of usable capacities. Each point in the pink rectangular region represents a usable gravimetric and volumetric 

capacity. Each point on the green region represents an ML-predicted crystallographic property corresponding to a specified 
usable gravimetric and volumetric capacity shown in the pink rectangular region. The filled red circles represent the 

predicted crystallographic properties corresponding to the input capacities of 7 wt% and 40 g H2/L (indicated by white  
empty circles).   

 

Table 3. MOF Crystallographic Properties Predicted by Machine Learning that Correspond to Usable Gravimetric and 
Volumetric Capacities of 7 wt% and 40 g H2/L 

Crystallographic Property Range of Crystallographic Property 
Single-crystal density (g/cm3) 0.49 ± 0.01 
Pore volume (cm3/g) 1.74 ± 0.03 
Void fraction (dimensionless) 0.86 ± 0.02 
Gravimetric surface area (m2/g) 5,222 ± 402 

 
An important aspect of MOF synthesis is the control of particle morphology, which allows properties to be 
tuned without changing the material composition. The morphology can be controlled via a proper choice of 
synthetic conditions. Usually, temperature, solvent, and the molar ratio of reagents allow for the shaping of 
crystal morphology. However, in the case of MOFs these effects are typically too subtle to cause gross 
morphological changes. In contrast, using additives in the reaction mixture strongly affects the crystal 
morphology, as illustrated here.  

As shown in Figure 3, different morphologies of MOF-5 were synthesized by mixing a constant concentration 
of initial reagents (H2BDC and Zn(NO3)2·6H2O) and using different concentrations of polycarboxylates, 
including H3L (a tricarboxylic linker) and H4L (a tetracarboxylic linker). It was found that introducing ~3.7 
mol% H3L (H3BTB, L1) to the reaction mixture generates octahedral-shaped crystals in 24 hours; introducing 
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the same polycarboxylate at ~1.9 mol% to the reaction mixture generates cuboctahedra-shaped crystals (24 h). 
Additionally, another H3L (amine group functionalized H3BTB, L2) polycarboxylate was identified for 
morphology control. Introducing ~2.8 mol% of this molecule to the reaction mixture generates cuboctahedra-
shaped crystals (24 h). Finally, introducing H4L (L3) polycarboxylate in concentrations of ~1.6 and ~6.6 mol% 
generates cuboctahedral- and spherical-shaped MOF-5 crystals, respectively, over the same 24-hour 
timeframe.  

In total, the H3L/ H4L polycarboxylate concentration was found to be effective in controlling the crystal 
morphology. We succeeded in identifying three polycarboxylates that can control octahedra and cuboctahedra 
morphologies of MOF-5. The phase purity of obtained morphologies was confirmed through powder X-ray 
diffraction. The powder patterns of all morphologies were found to agree with the expected pattern of MOF-5.  

 

   

(a) (b) 

 
(c) 

Figure 3. Optical images of different morphologies of MOF-5 crystals obtained by the addition of L1 (a), L2 (b), and L3 (c) 
polycarboxylates to the reaction mixture of H2BDC and Zn(NO3)2·6H2O. The respective powder X-ray diffraction patterns are 

also shown. 
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CONCLUSIONS AND UPCOMING ACTIVITIES 
Using machine learning and a database of previously-calculated MOF properties, this project has demonstrated 
the ability to predict or “reverse-engineer” the crystallographic properties of an arbitrary MOF that correspond 
to a specified usable gravimetric and volumetric hydrogen capacity. Furthermore, it was demonstrated that the 
ranges of the predicted crystallographic properties are within the realm of possibility for the development of 
new MOFs. In addition to these computational accomplishments, experimental activities identified three 
additives capable of controlling the morphology of MOF-5 from cubes to octahedra. This development is a 
prerequisite for more efficient packing of MOF powders.  
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