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Overall Objectives 
• Synthesize highly conductive and chemically 

stable hydrocarbon-based anion exchange 
membranes (AEMs). 

• Prepare ionomeric electrode binders for the 
fabrication of anion exchange membrane fuel 
cell (AEMFC) electrodes. 

• Integrate non-precious metal or low-Pt metal 
loading electrocatalysts into membrane 
electrode assemblies (MEAs). 

• Demonstrate the high performance of 
AEMFCs. 

• Demonstrate AEMFC durability under steady 
and accelerated stress conditions. 

Fiscal Year (FY) 2019 Objectives 
• Complete the alkaline stability evaluation of 

poly(phenylene) AEMs. 

• Identify AEMFC degradation mechanisms. 

Technical Barriers 
This project addresses the following technical 
barriers from the Fuel Cells section of the Fuel 
Cell Technologies Office Multi-Year Research, 
Development, and Demonstration Plan1: 

• (A) Durability (polymer electrolytes) 

• (B) Cost (non-precious metal catalysts) 

• (C) Performance (AEMFCs). 

Technical Targets 
This project is developing advanced materials for 
AEMFCs for practical use in power applications. 
Insights gained from this project will be applied 
toward the next-stage AEMFC systems. The 
technical targets for AEMFCs in the Multi-Year 
Research, Development, and Demonstration Plan 
are: 

• Q2, 2019: 0% chemical degradation for 1,000 
h in 4 M NaOH at 80°C. 

• Q4, 2019: Identifying AEMFC degradation 
mechanism. 

FY 2019 Accomplishments 
• Completed the alkaline stability study of 

AEMs (no chemical degradation for >1,000 h 
in 4 M NaOH at 80°C). 

• Completed the impact of phenyl adsorption on 
AEMFC performance. 

• Achieved 1.55 W/cm2 peak power density 
from the mitigation strategy of cation 
hydroxide–water co-adsorption study. 

• Identified the possible durability-limiting 
factor by phenyl oxidation for the first time. 

1 https://www.energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22 
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INTRODUCTION 
In the previous project years (FY 2016–2018), we developed alkaline stable AEMs (quaternized Diels-Alder 
poly(phenylene)s [TMAC6PP] and poly(m-terphenylene)s [TPN]) [2–4]. We also developed an advanced 
ionomer (quaternized poly(fluorene) [FLN]) to demonstrate the AEMFC peak power density of 1.5 W/cm2 by 
reducing undesirable phenyl group adsorption. While we demonstrated excellent alkaline stability of the 
poly(phenylene) AEMs, we have not shown possible degradation mechanisms in harsher conditions. In FY 
2019, we completed the alkaline stability evaluation of TMAC6PP under various accelerated stress conditions 
to identify the possible degradation mechanisms. We also continue to understand the performance- and 
durability-limiting factors for AEMFCs. In FY 2019, we focused on cation hydroxide–water co-adsorption, 
which is a known performance- and durability-limiting factor. Moreover, we identified for the first time that 
phenyl oxidation of ionomer in the AEMFC cathode is a critical durability-limiting factor. 

APPROACH 
Alkaline Stability of Quaternized Poly(phenylene) AEMs 
We did not observe AEM degradation under normal alkaline stability test conditions, ca. 1 M NaOH at 80°C 
for 1,000 h. Therefore, in FY 2019, we employed three different accelerated stress test (AST) conditions. In 
the first method, we placed AEMs at 80°C in 1 M and 4 M NaOH for 11,000 h. In the second method, we put 
AEMs in a pressure vessel at higher temperatures, ca. 120°C or 160°C, and 4 M and 8 M NaOH. In the third 
method, we exposed AEMs at higher temperatures, ca. 100°C, under reduced relative humidity (RH). During 
the stability tests, we investigated the structural change of the AEMs and identified the degradation 
mechanisms. 

AEMFC Performance-Limiting Factor (Cation Hydroxide–Water Co-Adsorption) 
We focused the cation hydroxide–water co-adsorption study on the hydrogen oxidation reaction (HOR) 
catalysts. In FY 2019, we directly detected the co-adsorbed layer on the Pt surface by neutron reflectometry. 
The co-adsorbed layer thickness and the composition were calculated by the scattering length density 
modeling. Based on the result, we have synthesized a new ionomer that mitigates the effects of cation 
hydroxide–water co-adsorption. 

AEMFC Durability-Limiting Factor (Phenyl Oxidation) 
We characterized the electrolytes that contact with oxygen reduction reaction catalysts under AEMFC 
operating conditions. By analyzing the electrolyte with 1H nuclear magnetic resonance spectroscopy (NMR), 
we identified the degradation component of AEMFCs during cell operations. Density functional theory 
calculation and surface Fourier-transform infrared spectroscopy were used to understand the ionomer 
degradation mechanism. 

RESULTS 
Alkaline Stability of AEMs 
In FY 2018, we showed that the TMAC6PP membranes are stable in 0.5 M NaOH at 80°C for at least 3,000 h. 
In FY 2019, we found that degradation pathways of TMAC6PP under more harsh conditions depend on the 
testing conditions. The degradation mechanism of TMAC6PP under 4 M NaOH at 80°C after 2,000 h is the -
elimination of cations. However, we also found that even before 3,000 h, Williamson ether synthesis 
crosslinking reaction can occur with unreacted bromoalkyl group [5]. We proposed a nonaqueous 
quaternization method to prevent the crosslinking reaction, which may also be utilized in other polymer 
systems. Under higher temperature or low-RH ASTs, we found that the nucleophilic methyl substitution 
reaction is predominant. It suggests that high-temperature ASTs may not be a straightforward alternative to 
low-temperature alkaline stability tests, which is more relevant to the operating conditions of current alkaline 
membrane-based devices. Table 1 shows the degradation pathways of TMAC6PP AEM. 

FY 2019 Annual Progress Report 2 DOE Hydrogen and Fuel Cells Program 
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Table 1. Summary of Degradation Mechanisms of TMAC6PP as a Function of Test Conditions and Duration [5] 

Degradation mechanism Test conditions Time to occur (h) 
Williamson ether synthesis (crosslinking) 80°C, 4 M NaOH 

120°C, 8 M NaOH 
<3,000 h 
<2 h 

β-elimination 80°C, 0.5 M NaOH 
80°C, 4 M NaOH 

>4,000 h 
>2,000 h 

SN2 methyl substitution 100°C, 50% RH 
160°C, 8 M NaOH 

<250 h 
<72 h 

Cation Hydroxide–Water Co-Adsorption and its Impact on AEMFC Performance 
The cation hydroxide–water co-adsorption has been known as a possible AEMFC performance- and durability-
limiting factor [6]. In FY 2019, we directly detected the co-adsorbed layer of cation hydroxide–water on Pt 
using neutron reflectometry. The neutron reflectometry results indicated that the composition of the cation in 
the co-adsorbed layer is unusually high. For example, the TMAOH-to-water ratio in the co-adsorbed layer was 
4.5, 2,800-fold higher than that of the bulk electrolytes [7]. The extremely high cation hydroxide concentration 
in the co-adsorbed layer may impact the AEMFC performance and durability in three ways. First, the high 
concentration of cation hydroxide would impact the hydrogen access to the electrocatalyst layer. Second, the 
cation hydroxide–water co-adsorption would inhibit the water transport of the anode. Under this circumstance, 
water transport through the anode becomes less, and the hydration of the alkaline membrane can reduce. Third, 
the chemical stability of the cation group would be affected, and the degradation of the anode ionomer would 
be accelerated during fuel cell operation. 

To reduce the cation hydroxide–water co-adsorption, we have synthesized a new quaternized poly(biphenyl 
alkylene) ionomer that has a TEA functional group (TEA-o-BTN). The microelectrode experiments exhibited 
that the hydrogen limiting current of TEA-o-BTN was approximately 2 times higher than that of quaternized 
dimethyl poly(biphenylene). Because of reduced cation group co-adsorption and increased hydrogen access to 
the HOR catalyst surface, the TEA-o-BTN based MEAs have shown significantly better performance that 
reaches 1.55 W/cm2 peak power density (Figure 1) [8]. 
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Figure 1. Impact of anode ionomer on AEMFC performance. Performance measured at 80°C under H2/O2 (500/300 sccm, 
2,000/1,000 sccm) at 285 kPa backpressure. AEM: m-TPN (35 μm); anode: Pt-Ru/C (0.5 mgPt cm-2); cathode: Pt/C (0.6 

mgPt cm-2), humidification: 100%. 

Phenyl Group Adsorption and HOR Inhibition 
Rotating disk electrode investigation on alkaline HOR indicated that the HOR activity of Pt-based catalysts is 
greatly hindered by the phenyl adsorption parallel to the Pt surface. Our results suggested that the phenyl group 
adsorption may be minimized with Pt-Ru catalysts [9]. Therefore, we down-selected the Pt-Ru/C catalyst as 
the HOR catalyst for AEMFCs. We designed and synthesized the series of ionomers with biphenyl, o-
terphenyl, m-terphenyl, and p-terphenyl polymer backbone and calculated their adsorption energies on Pt and 
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PtRu catalysts. The adsorption energies for these polymer backbones were -2.87, -1.57, -3.61, and -3.94 eV, 
respectively, whereas benzene and fluorene’s adsorption energies on Pt(111) surface were calculated to be -
1.95 and -1.38 eV. The adsorption energies of the ionomer backbone are well correlated with the AEMFC 
performance (Figure 2) [10]. The AEMFC performance was gradually increased from less than 0.2 for m- and 
p- TPN to 1.5 W/cm2 for FLN ionomer. 

2.0 

1.5 

1.0 

0.5 

0.0 

phenyl adsorption energy, eV 

Figure 2. Correlation between phenyl adsorption energy of the backbone fragments of anode ionomer and peak power 
density of MEAs using the ionomer in the anode 

The life of AEMFC is also influenced by the adsorbed phenyl group, which is oxidized to form phenol. The 
phenol formation in the cathode ionomer of AEMFCs can neutralize the ammonium hydroxide and lowers 
electrode pH. The possible phenol formation via electrochemical oxidation of the phenyl group was 
investigated by analyzing the cathode ionomer that was retrieved from an MEA operated at 0.9 V for 75 h. 
During the 75-h life test, the cell current started to decrease. The 1H NMR spectrum of the alkyl ammonium 
functionalized poly(biphenylene)s (BPN) ionomer obtained from the postmortem of the cathode catalyst layer 
after the durability test detected the phenolic proton peak at 5.75 ppm (Figure 3) [11]. The significance of the 
phenolic compound interference during the AEMFC operation should be understood in the following aspect. 
Although the aryl proton conversion rate of BPN after the 75-h operation at 0.9 V is relatively low, the local 
phenol concentration at the catalyst-ionomer interface would be much higher because most oxidation of the 
phenyl group occurs at the catalyst-ionomer interface. 
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Figure 3. Reaction scheme for electrochemical phenyl oxidation to phenol in a cathode BPN ionomer based on 1H NMR 
spectra of BPN ionomer before and after extended-term test at 0.9 V 
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CONCLUSIONS AND UPCOMING ACTIVITIES 
• Demonstrated >2,000 h alkaline stability of quaternized polyphenylene AEMs in 4 M NaOH at 80°C. 

• Elucidated several degradation pathways of quaternized polyphenylene AEMs under different AST 
conditions. 

• Elucidated the cation hydroxide–water co-adsorbed layer by neutron reflectometry and developed 
TEA-functionalized ionomer that allows the AEMFC performance up to 1.55 W/cm2 peak power 
density. 

• Completed the phenyl adsorption study to show a gradual AEMFC performance increase, and 
achieved up to 1.5 W/cm2 peak power density with the least adsorbing ionomer. 

• Identified the durability-limiting factor (phenyl oxidation) using fuel cell and rotating disk electrode 
experiments for the first time. 

• Planned to develop a mitigation strategy of phenol formation and verify the AEMFC durability. 

• Planned to explore other unknown yet possible degradation mechanisms. 

FY 2019 PUBLICATIONS/PRESENTATIONS 
1. Yu Seung Kim, Kwan-Soo Lee, Cy Fujimoto, “Poly(phenylene)-based Anion Exchange Polymers and 

Methods Thereof,” US Patent Application Publication, US 16/039,158 (2019). 
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1. R. Wang, D. Li, S. Maurya, Y.S. Kim, Y.A. Wu, Y. Liu, D. Strmcnik, N. Markovic, and V. Stamenkovic, 

Nanoscale Horizons, DOI: 10.1039/C9NH00533A (2019). 

2. S. Maurya, A.S. Lee, E.J. Park, D.P. Leonard, S. Noh, C. Bae, and Y.S. Kim, “On the Origin of Permanent 
Performance Loss of Anion Exchange Membrane Fuel Cells: Electrochemical Oxidation of Phenyl 
Group,” J. Power. Sources, 436 (2019): 226866. 

3. S. Noh, J.Y. Jeon, S. Adhikari, Y.S. Kim, and C. Bae, “Molecular Engineering of Hydroxide Conducting 
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Chem. Res. 52 (2019): 2745–2755. 

4. E.J. Park, S. Maurya, M.R. Hibbs, C.H. Fujimoto, K.D. Kreuer, and Y.S. Kim, “Alkaline Stability of 
Quaternized Diels-Alder Polyphenylenes,” Macromolecules, 52 (2019): 5419–5428. 

5. I. Matanovic, S. Maurya, E.J. Park, J.Y. Jeon, C. Bae, and Y.S. Kim, “Adsorption of Polyaromatic 
Backbone Impacts the Performance of Anion Exchange Membrane Fuel Cells,” Chem. Mater. 31 (2019): 
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7. 7. D. Li, H.T. Chung, S. Maurya, I. Matanovic, and Y.S. Kim, “Impact of Ionomer Adsorption on 
Alkaline Hydrogen Oxidation Activity and Fuel Cell Performance,” Curr. Opin. Electrochem. 12 (2018): 
189–195. 

8. “The Design Aspect of Polymer Electrolytes for Alkaline Anion Exchange Membrane Fuel Cells,” 22nd 

International Conference on Solid State Ionics, Pyeong Chang-Gun, Gangwon-Do, South Korea (June 16– 
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9. Y.S. Kim, “Catalyst-Ionomer Interactions/AMFC Durability,” 2019 Anion Exchange Membrane 
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10. “Polyaromatic Electrolytes for Alkaline Membrane Fuel Cells,” Polymers for Fuel Cells, Energy Storage, 
and Conversion, Pacific Grove, CA (February 24–27, 2019). 
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Storage, and Conversion, Pacific Grove, CA (February 24–27, 2019). 
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Stability Test of Anion Exchange Membranes,” Polymers for Fuel Cells, Energy Storage, and Conversion, 
Pacific Grove, CA (Feb. 24–27, 2019). 

14. S. Maurya, I. Matanovic, H.T. Chung, E.J. Park, C.W. Narvaez Villarrubia, S. Noh, J. Han, C. Bae, C. 
Fujimoto, M. Hibbs, and Y.S. Kim, “Polyaromatic Ionomers for High Performance Alkaline Membrane 
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15. “Recent Advances of HT-PEMFCs and AEMFCs,” Toyota 2018 Fuel Cell Research Workshop Powering 
Future FCEVs with New Innovations, Torrance, CA (October 9, 2018). 
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