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Overall Objectives 
• Utilize materials informatics and machine 

learning to computationally screen material 
stability and viability for solar thermochemical 
hydrogen (STCH) production. 

• Validate the effectiveness of our materials-by-
design approach by experimentally 
demonstrating materials with computationally 
predicted thermodynamic and kinetic 
properties. 

• Apply machine learning techniques to 
computationally prototype new doped metal 
oxides rapidly for thermodynamic and kinetic 
viability and experimentally demonstrate 
materials with improved hydrogen 
productivity, reaction kinetics, and durability. 

Fiscal Year (FY) 2019 Objectives 
• Apply machine learning techniques to evaluate 

the viability of new doped metal oxides for 
STCH. 

• Validate our material screening approach by 
demonstrating the performance of a doped 
material with improved thermodynamic and 
kinetic properties. 

• Develop and utilize an accelerated pseudo 
transition state approach and machine-learned 
models to rapidly computationally screen 
materials for kinetic viability. 

• Demonstrate a doped material with hydrogen 
production above 250 μmol H2/g at reduction 
temperatures ≤1,400°C that reaches 80% of 
equilibrium hydrogen production within 10 
minutes. 

Technical Barriers 
This project addresses the following technical 
barriers from the Hydrogen Production section of 
the Fuel Cell Technologies Office Multi-Year 
Research, Development, and Demonstration Plan1: 

• Materials and Catalysts Development 

• High-Temperature Robust Materials. 

Technical Targets 
This project is contributing progress towards 
meeting the DOE hydrogen production target for 
the “Annual Reaction Material Cost per TBD H2” 
from the Fuel Cell Technologies Office Multi-Year 
Research, Development, and Demonstration Plan 
for solar-driven high-temperature thermochemical 
hydrogen production. This metric incorporates 
active material improvements through “decreased 
material usage, improved cycle time, and increased 
material lifetime.” Specifically, this project is 
working towards the following goals to meet DOE 
targets: 

• Hydrogen productivity: >00 μmol H2/g 

• Operating Temperature: Tred ≤1,400°C and ΔT 
≤400°C 

1 https://www.energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22 
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• Cycle Times: <7 minutes for 80% of 
equilibrium hydrogen production 

• Stability: <10% decrease in reactivity between 
cycles 100 and 200. 

FY 2019 Accomplishments 
• Demonstrated the use of a bond-valence 

prediction method for reducing the number 
and computational expense of density 
functional theory (DFT) calculations required 
for thermodynamic screening new perovskite 
structures. 

• Evaluated the stability of over 2500 perovskite 
structures using DFT calculations and the 
bond-valence prediction method. 

INTRODUCTION 

• Developed a machine-learned model to predict 
the activation barrier of oxygen diffusion 
which is 1,000 times faster than traditional 
transition state calculations and significantly 
accelerates the kinetic screening of new 
materials. 

• Applied the kinetic barrier bounding method 
developed in Year 1 to determine the range of 
activation barriers for 270 charged neutral and 
60 charged oxygen vacancy diffusion 
reactions. 

• Conducted a deep-dive analysis into the 
thermodynamic and kinetic properties of 
hercynite, which demonstrates the role of a 
complex combination of charged antisite-
vacancy defect pairs in enabling the STCH 
performance of hercynite. 

A sustainable hydrogen economy based on the low-cost production of hydrogen from renewable resources has 
the potential to transform the energy sector drastically. While solar energy is the most abundant renewable 
energy resource, the capture, storage, and distribution of it remains a challenge. Solar thermochemical 
hydrogen production (STCH) provides a promising route for efficient utilization of this disperse resource 
because it utilizes the entire solar spectrum to convert water to an energy-dense fuel, hydrogen. Like other 
large-scale hydrogen production methods, STCH suffers from significant technical challenges related to both 
the discovery of efficient water splitting materials and the development of an efficient process that exploits 
these materials. Despite the significant number of materials that have been examined for STCH, an optimal 
redox material to drive this process has yet to be developed. This research focuses on developing a powerful 
new approach for materials discovery that combines quantum mechanical and machine-learned models with 
experimental feedback to accelerate the development of new, durable redox materials. 

During the first year of the project, the team developed a machine-learned descriptor that improves the 
accuracy of predicting single and double perovskite stability to 92% from 74% for the conventional method. 
This descriptor can then be used for initial screening of perovskites to eliminate the need to use expensive first-
principles DFT quantum mechanical calculations to determine stability, significantly decreases the number of 
candidate materials, and reduces the computational expense of stability predictions from several hours to 
milliseconds per material. The team also developed a second machine-learned descriptor that predicts 
thermodynamic stability at relevant high-temperature conditions (>1,300°C), which further reduces the set of 
viable materials and thus the computational expense of accurately prototyping new materials and further 
narrows the pool of candidate materials requiring experimental testing. In Year 2 of the project, the team 
focused on applying these machine-learned models on the pool of candidate materials and conducting quantum 
mechanical screening on the thermodynamic properties of the stable materials. In addition, a new machine-
learned model was developed for predicting the kinetic diffusion barriers of new materials. Due to the high 
computational cost of calculations to predict kinetics, high-throughput computational screening of materials 
usually neglects kinetics and focuses only on the thermodynamic properties of candidate materials. This 
machine-learned model significantly accelerates the kinetic screening of candidates and will be used as the first 
step in screening materials for their kinetic viability. 

APPROACH 
This project focuses on the design and demonstration of mixed metal oxides for STCH with a predominant 
emphasis on perovskites and spinels. The redox stability of these materials at conditions at which they undergo 
an oxygen vacancy mediated STCH mechanism will be evaluated and their thermodynamic and kinetic 

FY 2019 Annual Progress Report 2 DOE Hydrogen and Fuel Cells Program 
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properties will be tuned through compositional (doping) control. We will ensure that properties are evaluated 
with the correct topology (structure and coordination) at STCH conditions. To achieve DOE targets, materials 
will be designed with low thermal reduction temperatures (<1,400°C), high hydrogen production capacity 
(>300 µmol H2/g/cycle), material stability and reactivity over many cycles (<10% loss in hydrogen production 
from cycles 100 to 200), and rapid reduction and oxidation kinetics (reaching 80% of equilibrium in <7 
minutes). This work will consist of four tasks to develop novel water splitting materials. We will: (1) develop 
machine-learned models for predicting stability in perovskites, (2) screen active materials for thermodynamic 
viability, (3) screen active materials for kinetic viability, and (4) experimentally test promising materials for 
redox cycling durability and thermodynamic and kinetic performance. 

The identification and development of optimal materials for STCH using computationally guided approaches 
requires the ability to rapidly and accurately predict the behavior of new materials. Typical high-throughput 
calculations rely on an evaluation of stability from 0 K ground-state calculations. In Task 1, we have utilized 
materials informatics and machine learning to develop two models to predict the stability of perovskites 
without any quantum mechanical calculations and to predict the thermodynamic stability of materials at high-
temperature conditions. In addition to being stable at relevant operating conditions, new materials must also 
possess high hydrogen productivity at low reduction temperatures in order to meet DOE targets for efficient 
and economic large scale hydrogen production. In Task 2, metal oxides are screened using a series of 
thermodynamic screening steps based on stability and neutral and charged vacancy formation. The initial 
thermodynamic screening has been conducted on ternary materials (ABO3) with optimization of active 
materials through compositional control (alloying) conducted later. In order to complete Tasks 1 and 2, the 
team is working closely with the National Renewable Energy Laboratory (NREL) HydroGEN node for First 
Principles Materials Theory. Beyond the screening of thermodynamic material properties, STCH materials 
must reduce and oxidize at practical rates. However, current computational evaluations of new materials either 
screen-based exclusively on thermodynamic properties or calculate kinetics using computationally demanding 
techniques that are often as slow as or slower than experimental evaluation of kinetic properties. In Task 3, we 
are developing high-throughput methods based on pseudo transition state (TS) and machine-learned TS models 
to screen redox materials that pass the thermodynamic screening. The final aspect of this project is the 
experimental validation and demonstration of computationally screened materials. In Task 4, we are 
performing experiments to demonstrate the water splitting ability of candidate materials both at the University 
of Colorado and the Sandia National Laboratory HydroGEN node for the Laser Heated Stagnation Flow 
Reactor. Feedback from experiments will validate our models for candidate active materials identified from the 
rapid thermodynamic and kinetic screenings. 

RESULTS 
During FY19, the team identified methods to rapidly predict perovskite structure from the composition by 
combining the machine-learned descriptor for perovskite stability (τ) developed in Year 1 with a bond-valence 
structure prediction method (SPuDS). 

Structural relaxations were performed using DFT for 314 ternary oxide perovskites predicted to be stable or 
slightly meta-stable using the tolerance factor (τ). Each of these materials was evaluated in eight common 
perovskite tilting systems with the initial structure given by SPuDS. Each structure can be predicted by SPuDS 
on the order of 1 second, whereas a DFT relaxation using an often poor starting guess may take upwards of 48 
hours. As shown in Figure 1, the predicted volume determined using SPuDS matches the DFT relaxed volume
remarkably well with a mean absolute deviation of 7.25 Å3. In addition to assessing the accuracy of the volume 
prediction, the similarity in the crystal structures was also assessed using the structural fingerprinting distance 
(SFPD) method. As shown in Figure 1, the mean SFPD value between the SPuDS-predicted structure and the 
DFT ground state structure is 0.42. The typical SFPD values for comparing the structures of cubic and 
distorted perovskites are 1.5–2. This shows that SPuDS provides an accurate prediction of the structure of 
perovskites, especially considering its low computational expense, which significantly reduces the cost of each 
DFT relaxation with only the negligible additional cost of a SPuDS calculation. Beyond providing an 
improved starting structure for the DFT calculations and determining the stable polymorph, SPuDS also 
enables the use of structural descriptors in a machine-learned model, as opposed to only compositional 

FY 2019 Annual Progress Report 3 DOE Hydrogen and Fuel Cells Program 
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descriptors, to identify promising material properties. We are actively working to develop machine-learned 
models for important STCH properties based on the structural descriptors provided by SPuDS, but validated 
using DFT. 

Figure 1. (Left) Comparison of the computed volume from DFT and the predicted volume from a bond-valence structure 
prediction method (SPuDS) for 2506 different perovskite structures and 314 perovskite compositions. (Right) Calculated 

structural fingerprinting distance (SFPD) between the DFT ground state polymorph structure and the structure predicted by 
SPuDS for 314 perovskite compositions. 

Additionally, for each of the eight tilting systems given by SPuDS, a Global Instability Index (GII) can be 
computed, which provides an indication of the relative stability of the predicted polymorph structures. As 
shown in Figure 2, by utilizing the GII to rank-order the possible perovskite tilting systems, the number of 
calculations required for each composition to capture 98% of the DFT ground-state structures is reduced from 
eight to three. Furthermore, 100% of the correct ground state structures are identified with five DFT 
optimizations, thus reducing the number of DFT optimizations from eight to five to have 100% certainty of 
identifying the DFT predicted ground state polymorph. This combined approach of applying the machine-
learned descriptor τ to initially screen for perovskite stability, utilizing SPuDS to generate initial starting 
structures, and evaluating the GII to determine the most stable tilting systems not only reduces the 
computational expense of each DFT relaxation by providing a better starting guess geometry but it also 
significantly reduces the number of DFT calculations needed to identify the most stable distorted structure. 

Figure 2. Number of DFT calculations required to correctly identify the ground state structure when the GII is used to rank-
order the stability of crystal structures for the 8 possible perovskite tilting systems given by SPuDS. 

For the kinetic screening of new materials during FY 2019, the team applied the rapid activation barrier 
bounding approach we developed in FY 2018, which enables the rapid evaluation of the mobility of oxygen 
vacancies in new materials. The kinetics study was expanded to include 330 bulk diffusion reactions, including 
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270 for charge-neutral oxygen vacancies and 60 for positively charged oxygen vacancies. The inclusion of 
investigating charged vacancy diffusion in this past fiscal year was added because, over the course of studying 
the energies of the formation of oxygen vacancies, we discovered the importance of the vacancy charge state in 
its overall thermodynamic stability. Of the 60 materials calculated, the diffusion barrier is significantly lower 
for the charged vacancies ~50% of the time, while the diffusion barriers are relatively similar ~30% of the 
time. This indicates that charged oxygen vacancies tend to have lower diffusion barriers than neutral 
vacancies; however, this trend is too weak to be relied upon for screening, and additional calculations need to 
be performed to predict STCH kinetics. 

From the activation barriers calculated using the bounding approach, the team developed a preliminary 
machine-learned model that is able to predict activation barriers using properties calculated from only the unit 
cell. While this means that DFT calculations are still necessary, a unit cell calculation is orders of magnitude 
less computationally demanding than traditional transition state calculations, which require a supercell model 
and the bounding method developed in FY 2018. This machine-learned model, developed using the SISSO 
statistical learning algorithm, predicts diffusion barriers with a root mean squared error of 0.38 eV, as 
illustrated in Figure 3. This level of error is sufficiently low to distinguish between fast and slow diffusion 
reactions, which we determined to be an approximately 1 eV difference in energy between fast and slow STCH 
materials, and can, therefore, be used as the approach for the initial kinetic screening of STCH candidates. The 
calculation of the unit cell properties used as input into this machine-learned model requires approximately 
1,000 times less computational time than traditional transition state calculations using a supercell and enables 
the rapid initial kinetic screening of new materials. Materials that pass this initial screening can then be 
screened using the bounding approach developed in FY 2018. In the future, this transition state model will be 
modified to include charged diffusion. 

Figure 3. Comparison of the activation barrier bounds calculated using the bounding approach developed in Year 1 (blue) 
and predicted barrier using the machine learned model developed in Year 2 (black) for O vacancy diffusion. Data is ordered 

by increasing average calculated activation barrier 

In addition to the high-throughput calculations conducted for the thermodynamic and kinetic screening of new 
materials, during FY 2019, the team also performed a deep-dive analysis into the known water splitting 
material hercynite (FeAl2O4) in order to understand its performance further. Experimentally, hercynite has 
been demonstrated to produce a substantial amount of hydrogen; however, its kinetics are slow. From a 
thermodynamic perspective, it was found that the stability region of hercynite on the Fe-Al-O phase diagram 
overlaps well with the ideal STCH operating conditions. In normal hercynite, where oxygen is surrounded by 
one Fe atom and three Al atoms, the neutral oxygen vacancy formation energy is too high to produce a 
substantial equilibrium vacancy concentration to promote water splitting. Therefore, other defects and defect 
pairs must be considered. In the spinel structure of hercynite antisite defects (e.g., Fe on an Al site: FeAl, or Al 
on a Fe site: AlFe) result in cation disorder and lead to different local cation environments surrounding each 
oxygen in the lattice. As shown in Figure 4, when charged antisite-vacancy defect pairs are present, the defect 
energy in hercynite is substantially reduced. A thermodynamic analysis of these defect pairs indicates that the 
largest degree of reduction occurs under Fe-rich conditions with a maximum computed Fe solubility in the 
spinel phase of Fe/(Fe+Al) ≈ 0.5. These charged defect pairs enable the high degree of reduction that is 
observed experimentally in hercynite. The team also studied the kinetic behavior of hercynite and found 
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similar beneficial effects of antisite and charged defects on oxygen vacancy diffusion. While the activation 
barrier in normal hercynite is very high (2.46 eV), the diffusion barrier is reduced by 0.6 eV for each additional 
nearest-neighbor Fe atom. Furthermore, Fe-rich conditions are found to provide redox flexibility and increase 
the rate of vacancy diffusion in the material. This deep-dive study into hercynite demonstrates that the STCH 
mechanism may not simply be mediated by neutral oxygen vacancies as had been previously assumed, but that 
charged defects and defect pairs play a critical role in enabling the reduction of some STCH materials. We plan 
to explore these suggestions to examine whether Fe-rich hercynite might lead to STCH with similarly high 
hydrogen production, but at significantly faster rates than near stoichiometric hercynite. 

Figure 4. Charged and neutral antisite-oxygen vacancy defect pairs in FeAl2O4. The energy of one, two, and three FeAl 

antisite-oxygen vacancy pairs are shown in red, green, and blue, respectively. In all cases, these defects are most favorable 
in a negatively charged defect state and are lower in energy than the oxygen vacancy in normal hercynite (teal). 

CONCLUSIONS AND UPCOMING ACTIVITIES 
The materials-by-design approach has been developed to (1) significantly narrow the candidate materials 
space, (2) rapidly predict stability at high-temperature conditions, (3) increase the capabilities of state-of-the-
art high-throughput kinetic screening, and (4) identify relevant thermodynamic screening parameters. This 
year, the team has utilized machine learning models to reduce the materials space from millions of candidates 
to thousands based on stability. This space has been further reduced through the use of a bond-valence 
prediction method and the stability of over 2,500 perovskite structures has been evaluated using DFT. In the 
future, the team will screen stable materials based on their defect properties and potential to split water at 
relevant operating conditions and experimentally validate these materials at CU and Sandia. We will also 
develop models to rapidly predict the electronic contributions to the entropy, which could be a key factor in 
determining the thermodynamics of oxidation and reduction of the redox material. In FY19, a new machine-
learned model was developed to predict activation barriers for oxygen diffusion rapidly. In the future, this 
model will be applied to new candidate materials to screen materials for their kinetic properties rapidly. The 
thermodynamic and kinetic properties of hercynite have been studied in detail, and the role of a complex 
combination of charged antisite-vacancy defect pairs has been identified. In the future, the performance of Fe-
rich hercynite, which has been computationally predicted to outperform stoichiometric hercynite, will be 
evaluated experimentally. In order to enable effective collaboration, the team at the University of Colorado and 
the NREL HydroGEN node for First Principles Materials Theory meet biweekly meetings and have 
collaborated on both the high-throughput thermodynamic screening and the deep-dive hercynite study. 

FY 2019 PUBLICATIONS/PRESENTATIONS 
1. C.J. Bartel, C. Sutton, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, L.M. Ghiringhelli, M. Scheffler, “New 

tolerance factor to predict the stability of perovskite oxides and halides,” Science Advances 5, no. 2: 
eaav0693 
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