2004 DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Review

MEA & Stack Durability for PEM Fuel Cells

3M/DOE Cooperative Agreement No. DE-FC36-03GO13098

Fuel Cell Components Program

Mike Hicks

3M Company

May 25, 2004

This presentation does not contain any proprietary or confidential information

Objectives

3M

Overall

- Determine root causes of MEA failure modes
- Develop an MEA with enhanced durability and maintain performance
 - Manufacturable in a high volume process
 - Meets market required targets for lifetime and cost
 - Optimized for field ready systems
- System demonstration >2000 hrs

Work to Date Focus

- MEA component development
- MEA characterization and diagnostics
- Defining system operating window

Budget			
	Total \$	DOE \$	Contractor \$
Total	10,100,000	8,080,000	2,020,000
FY '04 Project Management Plan (12/03)	4,340,000	3,480,000	860,000
FY '04 Projected Allocation	2,690,000	2,150,000	540,000

Technical Barriers and Targets

- DOE Technical Barriers for Distributed Systems

 E. Durability
- DOE Technical Barriers for Fuel Cell Components
 - O. Stack Material and Manufacturing Cost
 - P. Durability
- DOE Technical Target for Fuel Cell Stack System for 2010
 - Cost \$750 \$1,000/kW
 - Durability 40,000 hours

Approach

- Develop MEA utilizing 3M proprietary perfluorinated sulfonic acid ionomer which has demonstrated improved oxidative stability over baseline
- Develop and validate individual component aging tests and characterization methods
- Correlate single-cell test data and characterization data on virgin and aged components and MEAs leading to a more focused materials development strategy
- Optimize stack and/or MEA structure based upon modeling and experimentation
- Selectively test MEA and stack designs for enhanced system durability

Project Safety

- Corporate Policy and Procedures
 - Hazard review for new/modified facilities, equipment and processes
 - Risk assessment process for design and production of products
 - New Product Introduction system
 - Life Cycle Management
 - Change Management
- Test Station Safety
 - Emergency stop capabilities
 - Alarms
 - Over temperature and pressure protection
- No unusual safety issues have been encountered todate on this project.

- Membrane Improved oxidative stability • GDL
- Cathode catalyst test to select the most stable material
- **MEA Diagnostics**
 - Peroxide measurements key to understanding peroxide kinetics and impact on MEA durability
- System operating window
 - Defining operating window investigated dew point, cell temperature, current density

Note: Portion of data from DOE Program No. DE-FC36-02AL67621

Future Work

- Remainder of 2004
 - Ongoing MEA component development
 - Determine decay mechanisms and kinetic parameters
 - Develop accelerated lifetime predictor tests
 - Complete initial 3D model and segmented cell work
 - Study interactions of system parameters on MEA durability
- 2005-2006
 - Select MEA components
 - Link accelerated test results to lifetime
 - Develop and implement strategies to mitigate decay mechanisms
 - System demonstration