2004 DOE HYDROGEN, FUEL CELLS, AND INFRASTRUCTURE TECHNOLOGIES PROGRAM REVIEW MEETING May 24-27, 2004, Philadelphia, PA

Novel Approach to Non-Precious Metal Catalysts

Radoslav T. Atanasoski 3M Company May 25, 2004

3M/DOE Cooperative Agreement No. DE-FC36-03GO13106

This presentation does not contain any proprietary or confidential information

Project Objectives

Overall:

- Demonstrate & develop non-precious metal NPM cathode catalyst
 - to lower cost (50 % less vs. target of 0.2 g Pt/peak kW)
 - to reduce the dependence of PEM fuel cell catalysts on precious metals
- Additionally, identify opportunities for
 - system cost reduction, through breakthroughs in key area of the fuel cell, the catalyst
 - application of **cost-effective processes for MEA fabrication**, closely associated with the development of the new catalyst

Sept. 2003 - May 2004:

- Investigate Fe-N-C as a model catalytic site
- Test 1- and 2- step synthesis processes
- Fabricate & characterize MEA's from initial NPM samples

Budget

(\$ in millions)

	Total	DOE	Contractor
Total	3.61	2.89	0.72
FY04	1.00	0.80	0.20

Technical Barriers and Targets

- DOE Technical Barriers for Fuel Cell Components
 - O. Stack Material and Manufacturing Cost
 - P. Durability
 - Q. Electrode Performance
- Technical Targets
 - Performance comparable to platinum used in current MEAs at a cost 50% less compared to a target of 0.2 g
 Pt/peak kW
 - Durability of greater than 2000 hours with less than 10% power degradation

4

Approach

To develop new, vacuum deposited, NPM catalysts, 3M is utilizing:

- 3M's infrastructure for, and understanding of, catalysts generated by previous and concurrent 3M/DOE cooperative agreements
 - High TM/low Pt catalysts
 - 3M's unique nanostructured thin film substrate
 - Processes compatible with high volume manufacturability
- Recent insights regarding non-Pt based ORR catalysts for PEMFC's
 - Published work regarding ORR catalysts, e.g. Fe-N-C moieties identified by Dodelet (see, e.g., *J. Phys. Chem. B*, 104(2000)11238) (*Designated as "model catalyst" in this presentation*)
 - Advances and knowledge regarding vacuum deposited precursors suitable for forming TM catalysts, including a variety of carbon based materials

Safety

3M's established procedures regarding safety-related issues include

- Hazard Reviews to ensure compliance with environmental, health, and safety requirements. Required for
 - New or modified facilities, equipment, & processes
 - Fabrication & testing equipment
 - Laboratory & Manufacturing
- New Product Introduction system
 - Risk assessment process in the design and production of products
 - Life Cycle Management process
 - Change Management

No unusual safety issues have been encountered to-date on this project.

Project Timeline

Project Accomplishments

In the initial phase, **reproducing Fe – N – C as a model** catalytic site was attempted. In that regard, we have:

- Produced highly nitrogenated carbon by processes compatible with high volume production, mostly in pyridinic form.
- Demonstrated one-step synthesis process for producing the targeted chemical structure.
- Formed & characterized 50-cm² MEA's from the new catalyst.
- Modeled the incorporation of nitrogen and iron in the graphene layers.

Synthesis & Characterization of NPM Catalyst

Fabricated catalyst materials by 1- and 2-step processes.

Conducted physicochemical and electrochemical characterization.

- Materials Fabricated
 - 43 substrate coatings (12 carbon, 28 C-N_x)
 - 13 C-N_x-Fe_y catalyst materials via Process A, one-step synthesis
 - 30 TM catalyst synthesis via Process B, two-step

- Physicochemical Characterization
 - ESCA analysis on 43 samples, 140 spectra
 - XRF: 28 samples, 39 spectra
- Electrochemical Characterization
 - over 50 fuel cells

C-N_x Precursor: Nitrogen Content

High nitrogen content necessary, but not sufficient, for high surface density catalyst sites.

• Achieved 5 times higher N content than in the model catalyst.

Percentage of Pyridinic Nitrogen in Fe-N-C

To form high catalytic activity sites, nitrogen must be in pyridinic form.

• Achieved 15 – 20 % higher pyridinic N than in model catalyst.

11

Modeling: Nitrogen on Graphite Edge

Heat of formation from the reaction: $N_2 + C_x \rightarrow C_{(x-2)}N_2 + 2C_{(graphite)}$

- Substituting carbon for nitrogen in the graphene edges is thermodynamically favorable, especially if two N atoms are far apart.
- Substitution in the bulk is unfavorable.

3M

Model Catalyst Calculations: Fe-N₂-C

Incorporation of **2 N atoms in pyridinic sites** on the edge of a graphene sheet (upper).

Iron appears to **be in Fe**⁺⁺ and injects charge into the support (lower).

Electron charge distribution

- 1. VASP (Vienna Ab-initio Simulation Package)
- 2. Plane waves for electron wavefunction.
- 3. Projector Augmented Waves (PAW)
- 4. PBE exchange correlation functional

Electrochemical Characterization: Stability Evaluation

Comparison of samples made with and without nitrogen

• CV's indicate films made with nitrogen are more stable.

14

Electrochemical Characterization: Oxygen Response

Comparison of samples made by **one-step** (Process A) or by depositing TM on nitrogenated carbon from (Process B)

- TM coated on N-C exhibits better activity and lower impedance than one-step sample without losing stability.
- All the building blocks for the model catalyst are in place, but electrochemical activity remains to be improved.

3M

Future Plans

- Assess appropriateness of nitrogenated carbon precursor for transformation into catalyst.
 - Thermal application of TM to achieve TM N C model catalyst
- Identify the nature of the most active sites.
 - Intensify and expand the use of physicochemical methods (XPS, XRF, etc.).
- Continue modeling leading to promising NPMC systems.
- Explore boundaries of the NPMC space.
 - Broaden the range of process variations and key synthesis parameters.
 - Use of fast screening methods (subcontract with Jeff Dahn)