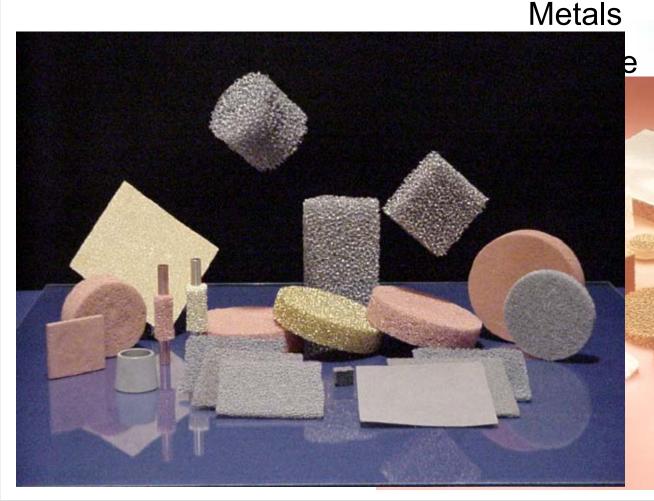
Dorvair fuel cell technology

SCALE-UP OF CARBON/CARBON BIPOLAR PLATES


DE-FC36-02AL67627

2004 DOE Hydrogen Fuel Cells & Infrastructure Technologies Program Review David P. Haack Porvair Fuel Cell Technology May 25, 2004

This presentation does not contain any confidential or proprietary information.

Porvair Fuel Cell Technology

About Porvair Fuel Cell Technology

porvair fuel cell technology

FeCrAIY Copper **Stainless Steel** Hastelloy X Hastelloy C Inconel 600 Silver Brass Cobalt Platinum Nickel Titanium **NiChrome NiCoCrAIY**

DOE PROGRAM OVERVIEW

- Develop Material and Manufacturing Method Leading to a Low-Cost Carbon/Carbon Bipolar Plate
- Evaluate and Demonstrate Performance of Product
- Evaluate Potential Cost of Manufacture

OVERALL PROJECT OBJECTIVES

- Develop Low Volume Carbon/Carbon Bipolar Plate Production Line
- Develop Incremental, Near-Term Cost Reduction Technologies for Carbon/Carbon Bipolar Plate
 - Near-net shape molding
 - Reduced-cost machining
 - Reduced-cost plate bonding
 - Net-shape molding
- Manufacture 10 kW Fuel Cell Sealed Plate Demonstration Stack
- Develop and Implement Comprehensive Quality Assurance Plan
- Develop Comprehensive Cost Model for High Volume Production

BUDGET

Scale-up of Carbon/Carbon Bipolar Plates

	FY2003	Program Total
Porvair Contribution	\$1,450,000	\$3,338,539
DOE Contribution	\$1,293,000	\$3,057,000
Total	\$2,743,000	\$6,395,539

Pre-Pilot Operations

DOE TECHNICAL BARRIERS AND TARGETS

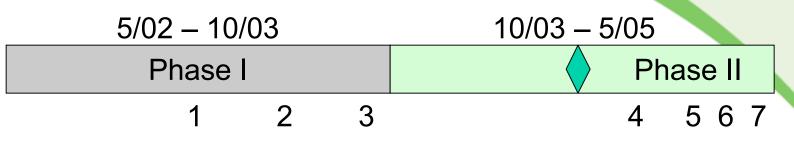
Scale-up of Carbon/Carbon Bipolar Plates

Fuel Cell Operating on Direct Hydrogen

Technical Barrier	Status 2003	Target 2005	Target 2010
Component Cost	\$200	\$125	\$45
Component Durability			
(hours)	1000	2000	5000
Fuel Cell Performance			
(W/L)	400	500	650

TECHNICAL APPROACH

- Develop Near-Term Product Cost Reductions
 - Develop near-net shape product through product development and molding trials
 - Investigate low-cost machining processes
- Manufacture 10 kW Fuel Cell Sealed Plate Demonstration Stack
 - Develop material
 - Develop bonding/sealing methods
 - Manufacture product

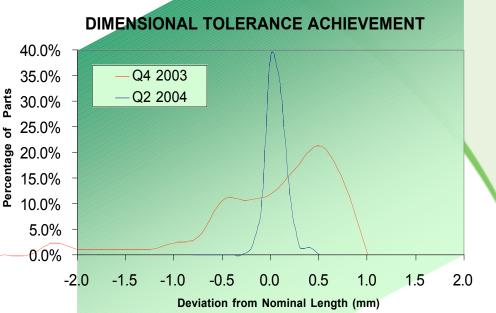

PROJECT SAFETY

- Manufacturing safety examples
 - Evaluation of raw material handling and use safety (airborne dusts)
 - Evaluation and measurement of worker exposure to off-gases generated during product manufacture
 - Improvement activities to eliminate workplace dangers (e.g., slip-prone surfaces, equipment operation and operator work procedures to minimize hazards.

PROJECT TIMELINE

Scale-up of Carbon/Carbon Bipolar Plates

Phase I – Pre-Pilot Materials and Process Development

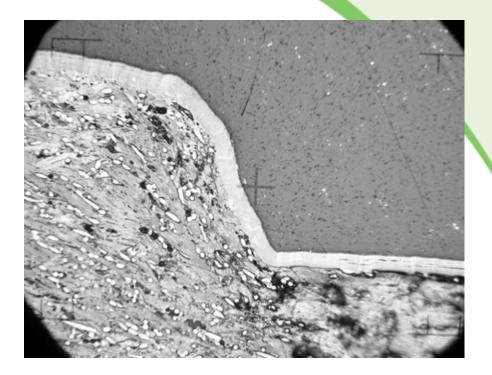

- 1. Develop pre-pilot production line (5-10 plates/hour)
- 2. Develop materials for customer evaluation
- 3. Customer fuel cell demonstration

Phase II – Product Cost Reduction Development

- 4. Investigate and develop cost reduction technologies
- 5. Develop and deliver 10 kW demonstration stack
- 6. Develop comprehensive quality assurance program
- 7. Develop detailed cost model

TECHNICAL Fuel cell technology ACCOMPLISHMENTS/PROGRESS

- Improved Product
 Dimensional Tolerance
 Achievement
- Molding Capability Demonstrated on Variety of Customer Platforms
- Excellent Product Properties _ Demonstrated



Property	Porous Plate	Sealed Plate
Electrical Conductivity (in-plane, S/cm)	300 - 600	600 - 700
Strength (4-pt bend, psi)	4000 – 5000	5000 - 7000
H_2 Permeability (cm ³ /cm ² /sec)	N/A	< 2 x 10 ⁻⁶

TECHNICAL ACCOMPLISHMENTS/PROGRESS

Scale-up of Carbon/Carbon Bipolar Plates

- Characterized Sealing Conditions to Produce Uniform Seal Layer and Repeatable Characteristics
- Developing Bonding Materials and Methods
- Optimizing Materials for Cost and Process-ability

Photomicrograph of Bipolar Plate Sealed Surface Layer

INTERACTIONS/COLLABORATIONS

Scale-up of Carbon/Carbon Bipolar Plates

UTC Fuel Cells

- Subcontractor to this program
- Developing materials evaluation methods
- Performing fuel cell tests on supplied materials
- Assisting in development of quality assurance and continuous improvement processes
- Oak Ridge National Laboratory
 - Technology licensed from ORNL
 - Participating in product measurement methods and process evaluation

REVIEWER QUESTIONS

Scale-up of Carbon/Carbon Bipolar Plates

Is Process Suitable for Sealed Plate Applications?

- Aggressively developing sealed plate partnerships and demonstrations
- Deliverable for program is sealed plate stack
- Numerous trials underway with customers using sealed plate designs

Is Process Cost-Prohibitive?

 The cost of carbon/carbon bipolar plates is not costprohibitive. The cost of the plates is highly dependent upon the volume of production. Cost analyses indicate that longterm target of \$10/kW is feasible at volumes exceeding 10,000,000 units annually.

FUTURE PLANS

Scale-up of Carbon/Carbon Bipolar Plates

Remainder of FY2004

- Continue developing near-term low cost technologies
- Continue developing processing capability
- Continue developing bonding technologies
- Manufacture and deliver 10 kW demonstration stack

FY2005 to End of Program

- Complete technology development program for low cost product
- Complete development of comprehensive quality assurance program
- Complete development of detailed cost analysis for product and process