Fuel Processors for PEM Fuel Cells

D. Assanis, W. Dahm, E. Gulari, H. Im, J. Ni, K. Powell, P. Savage, J. Schwank,
L. Thompson, M. Wooldridge, and R. Yang

> University of Michigan College of Engineering May 25, 2004

Michigan **Engineering**

Project Objectives

- Develop high performance, low-cost materials
 - High capacity sulfur adsorbents for liquid fuels
 - High activity and durable Autothermal Reforming (ATR), Water Gas Shift (WGS) and Preferential Oxidation (PrOx) catalysts
- Design and demonstrate microreactors employing high performance catalysts
- Design and demonstrate microvaporizer/combustor
- Design and demonstrate thermally integrated microsystem-based fuel processors
- Evaluate system cost

Michigan Engineering

Fuel Processor (Fuel Cell) Technical Barriers

- Fuel Processor Startup/Transient Operation
 - Improved catalysts, sorbents and reactors
 - Thermal integration
 - Decreased unit operations
- Durability
 - Improved impurity tolerance
 - Improved resistance to coking and sintering
- Emissions and Environmental Issues
- Hydrogen Purification/CO Cleanup
 - Improved catalysts, sorbents and reactors
- Fuel Processor System Integration and Efficiency
- Cost
 - Improved catalysts, sorbents and reactors
 - Integration and decreased unit operations

Fuel Processor (Fuel Cell) Technical Targets

Characteristics	Units	Current Status	Target for Year:	
		(2003)	2005	2010
Energy efficiency	%	78	78	80
Power density	W/L	700	700	800
Specific power	W/kg	600	700	800
Cost	\$/kWe	65	25	10
Cold startup time to max power @ -20 °C ambient temperature @ +20 °C ambient temperature	min min	TBD <10	2.0 <1	1.0 <0.5
Transient response (10% to 90% power)	sec	15	5	1
Emissions		<tier 2<br="">Bin 5</tier>	<tier 2<br="">Bin 5</tier>	<tier 2<br="">Bin 5</tier>
Durability	hours	2000	4000	5000
Survivability	°C	TBD	-30	-40
CO content in product stream Steady state Transient	ppm ppm	10 100	10 100	10 100
H ₂ S content in product stream	ppb	<200	<50	<10
NH ₃ content in product stream	ppm	<10	<0.5	<0.1

MichiganEngineering

Project Director: Co-PIs:

Subcontractors:

Levi Thompson (ltt@umich.edu) Gulari, Savage, Schwank & Yang (ChE); Assanis, Im, Ni & Wooldridge (ME); Dahm & Powell (Aero) Ricardo, Inc. (MI); Osram Sylvania; IMM (Germany); MesoFuel (NM)

Michigan **Engineering**

Project Safety

- Preliminary Identification of Safety Vulnerabilities (e.g. FMEA, HAZOP)
- System Safety Assessment
- Risk Mitigation Plan
- Safety Performance Assessment
- Communications Plan

π -Complexation Mechanism:

- Cu ions occupy faujasite 6-ring windows sites. Thiophene approaches site.
- σ -donation of thiophene π -electrons to the 4s orbital of Cu(I) or Ni(II)
- $d-\pi^*$ backdonation of electrons from 3d orbitals of Cu(I) or Ni(II) to π^* orbitals of thiophene

"This presentation does not contain any proprietary or confidential information."

Sulfur Adsorber Prototype

Sorbent Container

Yang et al., U.S. and foreign patents applied.

"This presentation does not contain any proprietary or confidential information."

• Three Sorbent Layers

- Activated Carbon (12.4 wt%)
- Activated Alumina (23 wt%)
- Ni(II)-Y (64.6 wt%)
- Gasoline Rate: 50 mL/hr
- Equivalent H₂ Output:
 2.8 moles/hr (100 W)
- Effluent Concentration:
 ~ 0.3 ppmw sulfur
- Operation Cycle: 9-10 hrs

Microreactors

- Materials of Construction
 - Silicon Microfabrication
 - Micromachined Metals
 - Low Temperature Co-Fired Ceramics (LTCC)
- Metal Microreactors
 - 1st Generation (GEN1) Micro-reactor
 - Design and Fabrication
 - 2nd Generation (GEN2) Micro-reactor
 - Design Overview and Achievements
- Semi-solid Forming (SSF) Process

Michigan **Engineering**

GEN2 Prototype Design

- Flexible design
- Assembled reactor module • is 77 x 64 x 54 mm (25 stacks)

Assembled module

Core Layers

Minimal Coke Deposition

WGS Prototype Results

• Temperature: 240°C

GHSV: 53,333 h⁻¹

Feed composition

Flow rate: 40 ccm $(1 W_e)$

"This presentation does not contain any proprietary or confidential information."

 $\begin{array}{|c|c|c|c|}\hline CO & 10\% \\ \hline H_2O & 31\% \\ \hline CO_2 & 6\% \\ \hline H_2 & 39\% \\ \hline N_2 & 15\% \\ \end{array}$

PrOx Prototype Results

- 4 % $Pt-Al_2O_3$ sol-slurry hybrid washcoat
- WHSV = 50 lit hr^{-1} g-cat⁻¹
- Increased catalyst loading of ~250 mg/foam
- Inlet stream compositions (simulated WGS exhaust):
 - CO : 0.79 0.81 %
 - O₂ : 0.81 1.19 %
 - CO₂ : 14.91 15.28 %
 - H₂ : 30.58 31.32 %
 - H₂O : 15.54 %
 - $N_2 : 36.23 36.99 \%$

PrOx Prototype Results

Performance of assembled PrOx module

Catalytic Tailgas Combustor Prototype

Burner Characteristics:

- 100 W nominal capacity mesoscale burner
- 80 ppi Pt-coated FeCrAlloy metal foam
- 8.0 L/min tailgas low-H₂ surrogate flow rate

Catalytic Tailgas Burner and Heat Exchanger Prototype

- Performance tests conducted for 1.5% 8% H₂ concentrations
- Current test results show single-sided efficiencies of 35-45%
- Double-sided efficiencies anticipated in 65-80% range

GEN2 100 W_e **Prototype Design**

	Vap/Com	ATR	WGS		PrOx
Temperature (°C)	450	600	340	290	220
Modules	1	1	1	1	1
Catalyst Type		Ni/CeZrO ₂	Au/CeO ₂	Au/CeO ₂	Pt/Al ₂ O ₃
Catalyst Weight (g)		1.5	6	4.5	2.4
No. of Foam cores		10	20	15	30
Foam Volume (cc)		4	8	6	12
Power Density (W/L)*					
Based on Foam	5,500	25,000	7,142		8,333
Target	5,882	10,417	2,525		9,091

Interactions and Collaborations

- Osram Sylvania (some IP transfer): Joel Christian - scale up of catalysts
- Ricardo: Marc Wiseman system optimization and cost analysis
- Mesofuel: Doyle Miller heat exchanger design and fabrication
- IMM: Volker Hessel reactor design optimization

Responses to Previous Year Reviewers' Comments

- Capacity of Cu(I) zeolite too low
- Coking of Ni-based ATR catalysts
- Verify performance of WGS catalysts
- Bottoms up approach
- Slow progress in developing microreactors
- Minimal involvement by companies
- Microprocessor work appears to be similar to PNNL
- Recommendations: Sulfur-tolerant ATR and hot gas sulfur sorbent

Future Work

- Remainder of FY03
 - Increase module power densities
 - Increase catalyst loading and utilization
 - Decrease parasitic weight (reactor and foam)
 - Assemble 100 W breadboard fuel processor
 - Evaluate cost and final size
 - Estimate start-up time
- FY04 (through end of 2004)
 - Demonstrate integrated module
 - Assemble 1 kW breadboard fuel processor

Project Director: Co-PIs:

Subcontractors:

Levi Thompson (ltt@umich.edu) Gulari, Savage, Schwank & Yang (ChE); Assanis, Im, Ni & Wooldridge (ME); Dahm & Powell (Aero) Ricardo, Inc. (MI); Osram Sylvania; IMM (Germany); MesoFuel (NM)

Michigan **Engineering**