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Objectives

• Study feasibility of fast-starting a fuel processor (FASTER)
- To meet DOE targets for on-board fuel processing (FP)

• Estimate energy consumed (by FP) during start-up

Relevance : On-board fuel processing will ease the 
transition to the hydrogen economy
Relevance : On-board fuel processing will ease the 
transition to the hydrogen economy

Budget : $2.4MBudget : $2.4M

Technical Barrier : 
I: FP Startup, Transient Operation 
L: CO Clean-up
M: FP Efficiency
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Approach
• Design, fabricate, and demonstrate the fast-starting capability 

of a laboratory-scale fuel processor
- ATR/WGS/PrOx based design
- Experimental evaluation at ANL
- Compare experimental data with model predictions
- Identify barriers and improvement strategies

• Collaborative effort with DOE labs and private industry
- Component and technical support

- LANL, ORNL, PNNL, PCI, AM, QG, university faculty

• Model fuel cell system designs to estimate the lifetime (start-up 
and drive cycle) fuel usage
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Project targets and specifications

• Start-up Time 60 seconds

• FP Rated Capacity 10 kWe

• Start-up Capacity 9 kWe (145 SLPM  of H2)

• Fuel Chevron-Philips Gasoline

• Reformate @ 60 sec. H2 > 30%;  CO < 50 ppm
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Reviewer Comments

• … means of ATR ignition have not been adequately considered
- Established ATR ignition after testing with liquid/vapor feeds and 

commercial heating elements

• Add more schedule time for system optimization after controls 
testing and total system testing
- Capital investments are done, expect to obtain valuable data in the 

coming weeks and months

• More detailed control strategies should be investigated
- Expect model to enable greater predictive control

• System design is complicated, too many reactors and HXs
- Component and mass reduction opportunities are being explored
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Project Safety
• Reviewed by committee of scientific, 

divisional safety, ANL staff (fire, ES&H)
- Detailed document includes P&ID, 

electrical drawings, identification of 
hazards and mitigation, procedural 
checklists, and qualified operators

- Set up in a canopy hood with 
H2-sensor and dedicated exhaust

- Continuously monitor each value  (T, 
P, flow) with automated shutdown 
triggered at defined alarm condition

- 3 automated shutdown sequences
- Emergency
-Manual soft shutdown
- PC-based normal shutdown
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Start-up Strategy: Produce (H2+CO) in ATR, oxidize 
downstream to generate heat

• ATR is ignited to produce hydrogen
• Reformate oxidation in shift zones generate heat for shift reactors
• PrOx catalysts are active at room temperature

- Active at 25°C, get better as they warm up

• ATR is ignited to produce hydrogen
• Reformate oxidation in shift zones generate heat for shift reactors
• PrOx catalysts are active at room temperature
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Components received from partners were 
assembled at ArvinMeritor
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Ignition in the ATR requires appropriate feeds 
and catalyst temperature
• Catalyst heated above ignition temperature

- Direct heating
- catalyst loaded on an electrically-heated support

- Indirect heating
- by air flowing past a heating element

• Fuel injection for POX reaction
- Inject fine, uniformly distributed spray of liquid fuel
- Inject vaporized fuel, premixed at the nozzle

• Air injection
• Water injection for ATR reaction

- Inject fine, well-distributed spray of liquid water
- Inject steam, premixed with air or vaporized fuel



10

Pioneering 
Science and
Technology EEREHydrogen, Fuel Cells & Infrastructure 

Technologies Program

A coiled heater rod was used to preheat the catalyst
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Fuel can be injected into ATR at 30 s
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• At 30 s, the exit stream 
reaches 150°C

• More responsive fuel 
vaporizer can be designed 

• 20 g/min of steam can be 
available in 20 s

• ATR conditions reduce 
coking potential, promote 
shift conversion
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ATR start-up tests were done using the central 
assembly of the FASTER hardware

The central cylinder includes
• Nozzle assembly
• Igniter heater coils
• Microlith-based ATR (3-layers)
• Microchannel HEx

• Nozzle assembly permits
- Liquid spray injection (fuel and water)
- Mixing of gaseous streams

- Air, vapor fuel, steam

• Reformer was started in POX mode: 
1. (Liquid fuel(a) + air) + liquid water
2. Vapor fuel(a) + air
3. (Vapor fuel(a) + air) + steam(b)

4. (Vapor fuel(a) + air) + liquid water
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CPOX Reforming : 10% H2 available in 22 s
• Gasoline vapor at 40 g/min
• 65% fuel conversion at O/C=0.6
• 700°C in 75 s (at 18-mm depth)
• Peak temperature (900°C) limited O/C
• H2 concentration exceeds 15% in 28 s
• Model under-predicts CH4 yield
• CO concentration exceeds 20%

- on-line CO analyzer max. is 20%.
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Transition to ATR using steam assists a 
smooth start-up transition
• 100% fuel conversion at O/C=0.8, S/C=0.4
• Temperature variations between 

successive layers are smaller than with 
CPOX
• H2 concentration is higher than with CPOX
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Switching to ATR with liquid water is possible
• Stability depends on spray size, 

distribution, and catalyst temperature
• Temperature non-uniformities near catalyst 

inlet edge
- General trends are reproducible

• H2 and CO yields are suitable for oxidation 
in WGS
• Igniter heaters can be turned off
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Reformate from HE1 reaches 100°C in 200s

• At 100°C, the WGS catalyst is 
expected to support oxidation 
reactions

• Microchannel heat exchanger 
designed for a heat load of 3.6 kW

• Considerable mass contributions 
from supporting structures
- 1988 g for heat exchanger block
- 737 g for ancillary block
- 388 g for inlet and outlet tubes
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Components fabricated are heavier and will require more start-up fuel 
than estimates based on functional elements (e.g., catalyst) only

• Support structures and instrumentation access needs have 
added to the weights
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Start-up energy needs are dominated by HE1 and WGS4
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• The mass of each component is expected to drop with further development
• Model indicates that the number of components can be reduced
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Fuel cell vehicles can offer fuel economy  
better than today’s cars
• Current (ICE) vehicles provide 23.7 

mpg (including cold-start)
• Operates for 100,000 miles with 

10,000 cold-starts

• If next generation cars should yield 
50% higher mpg (35.6)

• A fuel cell vehicle with on-board 
reformer will have to be more than 
50% more efficient than the ICE
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• If FP consumes 3MJ per cold-start, the FCV will need a drive-cycle 
efficiency to be 65% higher than the ICE vehicle

• Draft DOE target for 50-kWe fuel cell system
- 2 MJ per start: 1.5 MJ thermal, 0.5 MJ electrical accessories
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Three FP configurations were studied to  improve 
the lifecycle efficiency

0.41.41WGS Exit CO, %
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• FP-1 :   FASTER design
• FP-2 :   Compact FASTER design
• FP-3 :   Integrated with Anode Gas Burner
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Project Timeline
ID Task Name

1 Project Start
2 System Design Completed
3 Components Specified
4 Fuel Consumption Estimates
5 Components Received
6 Lab and BOP Readied
7 FP Fabrication (AM)
8 ATR Operations
9 FP (Total) Testing
10 Model Validation
11 Project Ends

10/1/02
1/31/03

3/31/03
11/14/03

2/16/04
1/30/04

3/5/04
3/31/04

9/30/04
9/30/04
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Interactions and Collaborations

• Close collaboration with consortium partners
- Components from LANL, ORNL, PNNL, PCI
- Fabricated at ArvinMeritor
- Technical support visits, model development support
- FASTER update meeting, Dec. ’03
- University faculty participation
- Private companies contributed significant resources

• Update to FreedomCar Tech Team, Feb. ‘04
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Accomplishments
• A collaborative effort has converted a FP concept into experimental hardware

- Components received from LANL, ORNL, PNNL, PCI
- Assembled and fabricated at ArvinMeritor and ANL
- Test apparatus built and safety approved
- Set up a flexible data-acquisition and control system

- PLC, SCXI based signal processing unit, LabView
- Start-up sequence established for ATR-readiness

• Models have supported process design, experiments have validated models
- Kinetics established from stand-alone experiments
- CFD used for component design, data interpretation
- FEMLAB model to predict steady-state performance and transient response (for 

control algorithm)
- GCTool model to design FP system and component sizing

• Estimated start-up fuel consumption of current FP design
- Investigated FP design options that promise improved fuel economy of the FCV
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Future Work
• Accelerate ATR readiness with

- Nozzle development
- deliver fine, distributed liquid spray
- distribute air uniformly  

- Catalyst loaded on electrically heated support
• Revisit reactor configuration for easy access
• Further develop control algorithms (with safety interlocks) 
• Develop catalyst to improve durability, use alternative supports
• Reduce thermal mass of fuel processors with focus on lifecycle 

efficiency
- Trade-off with drive-cycle efficiency
- Significant mass reductions anticipated 

- reduced number of components
- heat exchanger redesign
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