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Objectives

• To develop advanced water-gas shift (WGS) catalysts
to meet the DOE performance requirements

Compared to Cu-Zn and Fe-Cr WGS catalysts, these new
catalysts will be

more active (higher turnover rates)

less prone to deactivation due to temperature excursions

more structurally stable (able to withstand frequent cycles of
vaporizing and condensing water)

more resistant to sulfur poisoning

Improve our understanding of reaction mechanisms, catalyst
deactivation, and sulfur poisoning

Define operating parameters (e.g. steam:carbon ratios,
temperature, gas hourly space velocities (GHSV), catalyst
geometry) to optimize catalyst performance and lifetime
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Budget, technical barriers and targets
• FY04 Funding: $600K

• Technical barriers

A.     Fuel Processor Capital Costs

G.     Efficiency of Gasification, Pyrolysis, and Reforming
      Technologies

Z.     Catalysts

AB.  Hydrogen Separation and Purification

• Technical targets for water gas shift catalysts

gas-hourly space velocity (GHSV)  30,000 h-1

CO conversion  90% and selectivity  99%

lifetime > 5000 h

cost <$1/kWe
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Approach
• Identify metal(s) and oxide combinations which promote

one or more elementary reaction steps (e.g. CO oxidation,
H2O dissociation, formate/formyl decomposition) involved
in the water-gas shift reaction

• Evaluate the water-gas shift activity of these materials in a
microreactor system

• Use characterization techniques (e.g. X-ray spectroscopy,
temperature-program reduction (TPR), and electron
microscopy) to identify factors needed to improve WGS
activity or to minimize catalyst deactivation

• Develop kinetic model to predict catalyst performance for
reformer operating parameters
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Project safety

• Internal safety reviews are performed for all aspects of
this project to address ESH issues

Catalyst synthesis

• Synthesis procedures are performed in fumehoods to
exhaust vapors of powders and solvents

• Waste chemicals are collected and disposed of through
the Laboratory’s Waste Management Operations

Microreactor systems

Located in fumehoods

Equipped with safety interlocks that shut the system
down if excessive temperature or pressure is sensed or
the fumehood ventilation fails

• Safety reviews are updated and renewed annually
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Project timeline

Oct 1997:  Initiated
work on Pt shift
catalyst

May 1999:  Began work on
non-precious metal
catalysts

Mar 2003:
Demonstrated Pt-
Re with higher
activity and better
stability than Pt

Oct 2000:  Optimized Cu-mixed
metal oxide formulation Oct 2002:  Began

work on Pt bimetallic
formulation

May 2002:  Demonstrated
90% conv., <0.1 kg/kWe,
$0.9/kWe with Cu catalyst

June 2003:  Begin testing
of catalysts supported on
monoliths and foams

Aug 1999: Demonstrated
Pt catalyst with 0.14 wt%
loading

May 2001:
Demonstrated Co and
Ru promoted catalyst

May 2000:
Demonstrated Cu-
mixed metal oxide
catalyst

Jan-Mar 2004:
Completed kinetic
study of Pt-Re and
reactor modeling
analysis

Apr 2004:  Demonstrated
improved base metal
catalyst

Oct 2003:  Determined
optimal composition
for  Pt-Re
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Addition of Re improves performance of Pt-
ceria catalyst

0

1

2

3

4

5

6

7

8

200 250 300 350 400 450

Temperature, °C

0.91 wt%Pt - 0.95 wt%Re

0.92 wt%Pt - 1.79 wt%Re

1.81 wt%Pt - 1.77 wt%Re

0.87 wt%Pt

1.51 wt% Pt

2.86 wt% Pt

-0.5-10.5011Pt*

-0.17-0.580.40016Pt-Re

dcba
     Ea
(kcal/mol)

0

100

200

300

400

500

600

200 250 300 350 400 450 500

Temperature, °C

ca
t*s

1.81%Pt - 1.77%Re

0.87%Pt

0.91%Pt - 0.95%Re

2.86%Pt

0.92%Pt - 1.79%Re

Rate Equation:  exp(-Ea/RT)*COa*H2O
b*H2

c*CO2
d

*Ref: T. Bunluesin et al. Appl. Catal. B, 15 (1998) 107-114.



8

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of EnergyDOE/EE/HFCIT Program

TPR and extended X-ray absorption fine structure
(EXAFS) analysis suggests that Re stabilizes Pt
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• For Pt, shift in reduction
peak to lower temperature is
indicative of particle growth

• For Pt-Re, no change in
reduction profile

• More Pt-Pt bond formation in
Pt than Pt-Re after 100+ h on
stream at 400°C
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Even with deactivation, Pt-Re catalyst should be
able to meet GHSV target
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• Pt-Re lost about 50% of its
initial activity during the first
250 hours, but the activity
then stabilized

• Modeling study shows that 1%
CO can be achieved even with
deactivation if the temperature
and S/C ratio are increased
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Optimal geometric support for WGS catalyst -
foam or monolith?

• Both modeling and experimental studies show that there
may be a slight benefit to using a foam as a support

• However, the monolith is the preferred support based on
cost and production capacity
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Even with the higher activity of the Pt-Re, still
higher activity is needed to meet the cost targets
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• Modeling studies suggest
that the optimal catalyst
loading on the structured
support is 50-150 g/L
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• The $1/kWe target is tough
to achieve
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We are investigating less-costly precious metal
bimetallic catalysts
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• A combination of a precious
metal (PM)-base metal (BM) has
been identified that  exhibits
higher WGS activity than either
the PM or BM

• The equilibrium-predicted
CO conversion is
achieved at a GHSV of
30,000 h-1 at >340oC

• Long-term stability is yet
to be verified
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Base metal WGS catalysts may also be
possible
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• The choice of precursor and oxide support were critical factors
for optimizing activity

• The catalyst promotes methanation; however,

• The selectivity of CO to CO2 does not depend on the precursor or
support
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A critical factor for the base metal catalyst is to prevent
formation of the oxide and surface interactions
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• Pretreatment has a significant
influence on catalyst activity

• The most active catalysts have
a reduction peak at ~200°C

• The reduction peak at ~700oC is
indicative of metal-support
interaction
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Comparing the three types of WGS catalysts
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Can we avoid low temperature shift for
on-board reforming?
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• Modeling studies show
that the activity of Pt and
Cu catalysts decreases
significantly below 300°C

• Pt-Re can achieve 1% CO at
>300°C at GHSV 30,000 h-1
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Interactions and collaborations

• University of Alabama (Prof. Ramana Reddy) to
characterize shift catalysts using SEM, TEM, and
XPS

• Non-disclosure agreement (NDA) with Catalytica
Energy Systems to evaluate new shift catalysts

• Provided samples for evaluation

Toyota

Nissan

Süd-Chemie, Inc.
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Response to reviewers’ comments from FY03

• Monolith work should be given priority

• Improve durability (longer-term endurance
testing is needed)

• Better performance from non-precious metal
catalysts

• Are low temperature catalysts feasible for
on-board fuel processing?
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Milestones

05/04Complete the assessment of the feasibility
of a low temperature non-precious metal
catalyst to meet the DOE targets

 09/04Demonstrate <1% CO out using structured
catalyst(s) for >500 h

05/04Determine the optimal bimetallic
formulation for the Pt-based shift catalyst

01/04Determine the optimal operating
conditions for the water-gas shift reactor

DateMilestone
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Future work

• For bimetallic precious metal-base metal and base metal
catalysts

Optimize formulation to increase activity and minimize methanation

Improve our understanding of reaction mechanisms

• To improve catalyst durability and minimize deactivation

Conduct characterization studies of spent catalysts to further
understand deactivation mechanisms

Conduct long-term tests of improved catalyst formulations

• Address catalyst issues identified in “FASTER” Program

Catalyst deactivation and structural stability issues (i.e., effect of
frequent and rapid startup)

Obtain performance data as a function of operating parameters to
develop kinetic models


