DOE Cooperative Agreement "Integrated Manufacturing for Advanced MEAs" Topics 1.A.1, 1.A.2 and 1.A.3 June '03 through May '04 DE-FC04-02AL67606 Emory S. De Castro *E-TEK division*, De Nora N.A., Inc. May 2004

This presentation does not contain any proprietary or confidential information



The miracles of science

E-TEK









National Lab Review May 2004

## Objectives

### 1A1: catalyst and structures

- <u>New cathode alloys</u> and <u>ELAT</u> <u>structures</u> that allow an overall cell performance of greater or equal to 0.4A/cm<sup>2</sup> at 0.8V or 0.1A/cm<sup>2</sup> at 0.85V operating on hydrogen/air with precious metal loadings of 0.3mg/cm<sup>2</sup> or less and scales to mass manufacturing technology.
- Support 1A2 with high temp interface and/or GDL structure.

### 2003/2004 Objectives

- **1A1**: cited performance at 0.4mg/cm<sup>2</sup> using fg-ELAT/new catalyst
- **1A2**: ID polyelectrolyte within specifications
- 1A3: stack baseline testing set up, prelim scale-up of 1A1 component,testing

### 1A2: Hi T Membrane

- Develop membrane which operates at 120 °C and 25% RH
  - Water vapor pressure of 7 psi
- Membrane resistance  $\leq 0.1$  ohm cm<sup>2</sup>
  - Nafion N112 has 0.7 ohm cm<sup>2</sup> @ 120 C, 25% RH
- Hydrolytic, oxidative, mechanical stability in FC at 120 °C
  - 5K/40K hrs auto/stationary
- No leachable components
- $H_2$  (or MeOH if DMFC) fuel permeation  $\leq$  than 5 mA/cm<sup>2</sup>
- Cost  $\leq$  Nafion®

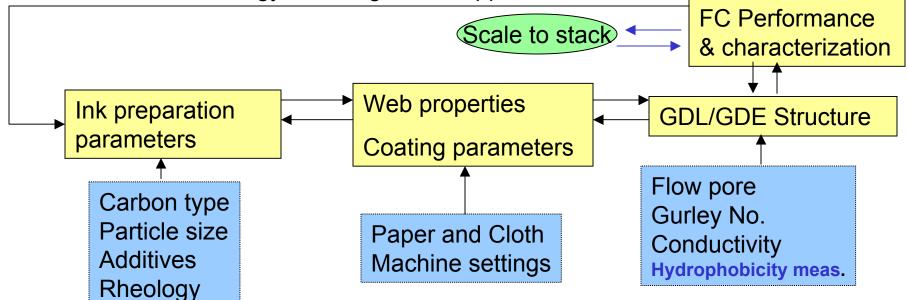
### **1A3: MEA Fab for Stack Scale**

- Take advances from 1A1 and/or 1A2 and integrate into pilot manufacturing
- Deliver 1-5kW stack with performance consistent with objectives of 1A1 or 1A2

# Budget

| Program/Co.         | In \$000s  |        |        |
|---------------------|------------|--------|--------|
| Total (4yr)         | Cost Share | DOE    | Total  |
| 1A1: DN             | 1,355      | 4,675  | 6,030  |
| 1A2: DP             | 1,497      | 4,491  | 5,988  |
| 1A3: DN             | 1,492      | 2,770  | 4,261  |
| 1A3N: NFC           | 1,331      | 2,492  | 3,823  |
| total               | 5,675      | 14,428 | 20,102 |
| <b>FY03</b> 1A1: DN | 248        | 995    | 1,243  |
| 1A2: DP             | 316        | 910    | 1,264  |
| 1A3: DN             | 551        | 1,095  | 1,576  |
| 1A3N: NFC           | 293        | 532    | 825    |
| total               | 1,408      | 3,532  | 4,909  |

# **Technical Barriers/Targets**


- DOE Technical Barriers
- O. Stack Material and Manufacturing Cost
- P. Durability
- Q. Electrode Performance
- R. Thermal and Water Management

### DOE Technical Targets


- (consistent with FreedomCar)
- PM loading 2005: 0.6g/ rated kW
- PM Loading 2010: 0.2g/rated kW
- >2000 hrs life (2005)
- >5000 hrs life (2010)
- Target achieved using method amenable to Mass manufacture: <\$125/kWe 2005; <\$45/kWe 2010</li>
- High Temperature Membrane
  - All of the above and
  - Contributes significantly to achieving System efficiency targets

### Approach: Catalyst and Fine Gradient ELAT®

- Catalyst: create structure-function relationships supported by Reitveld analysis of XRD patterns; develop/optimize new prep methods for catalysts and alloys
- GDL/GDE: Develop a new ELAT gas diffusion layer and/or electrode structure based on fine gradients of hydrophobicity and porosity using developmental coating machine
  - In 2002/03 focus was on GDL; current focus is on electrode
  - Methodology for fine gradient approach:



# Project Timeline (1A1, 1A3)

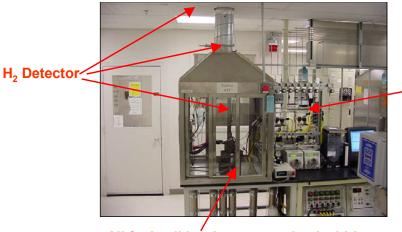


### 1A1

- 1. Identify Catalyst Prep/approach that is a pathway for highly active Pt or alloy
- 2. Demonstrate proof-of-principle of fine gradient ELAT
- 3. Check-point: show approach capable of decreasing PM load and/or incr. power
- 4. Combine catalyst and fg-ELAT advances into MEA; develop new structures/catalysts
- 5. Go/no go: interim goal of 0.4mg/cm<sup>2</sup> tot PM, 0.85V @ 0.1A/cm<sup>2</sup>, 0.8V @ 0.4A/cm<sup>2</sup>
- 6. Transfer methods to MEA fabrication team/refine approach to reduce PM to 0.3mg/cm<sup>2</sup>

### 1A3

- 7. Scale 1A1 results to stack size
- 8. Go/no go: show interim goal at stack scale
- 9. Develop MEA fabrication methods: compare ink to ion beam methods. Durability tests
- 10. Achieve 0.3mg/cm<sup>2</sup> tot PM/power at stack scale: deliver short-stack with best of low T/Hi T advances made with Pilot Process


## Project Safety

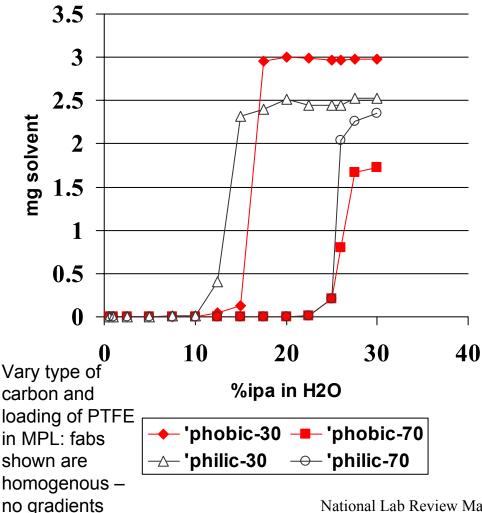
### 1A1 - Adv. Cathode

- Management of Change: New Catalyst Prep/reagents
  - Although catalyst activity is key design criteria, lower cost to convert from Pt to Pt/C or alloy is important
  - One route to lower cost is lower environmental impact
  - Lower environmental impact = greater level of safety from reduction of chemical hazards and procedures
- Management of Change: New Catalyst Prep/Activity
  - New highly active catalysts sometimes burst into flame upon first exposure to air
  - Modifications taken prior to scale-up; detailed examination of processes that trigger combustion; modifications of those processes

#### 1A2 - HT Memb.

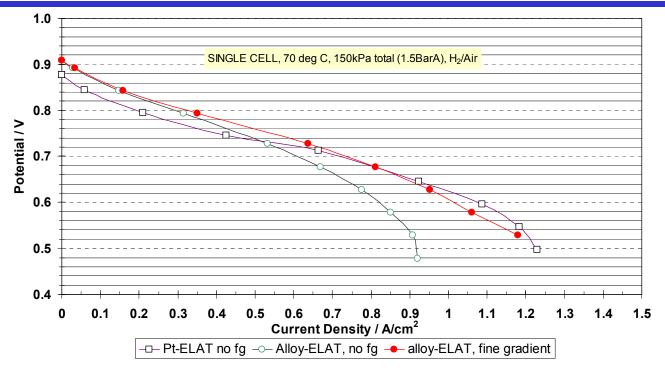
- Process Safety Management program emphasizes analysis of hazards for new or changed procedures and rigorous incident investigations.
- HT memb. synthesis
  - One incident involved bromine leaking from a plastic bottle - use of incompatible container material.
- HT Fuel Cell testing
  - Stations in ventilated enclosures with 3 levels of hydrogen detection & interlocks.
  - No hydrogen fires to date.




"Open Space" around test station plumbing

All fuel cell hardware contained within ventilated enclosure

National Lab Review May 2004


De Nora - DuPont- Nuvera DE-FC04-02AL67606

### Tools to help build the fine gradient: Method to measure Hydrophobicity -"Cobb Titration" being developed with CWRU



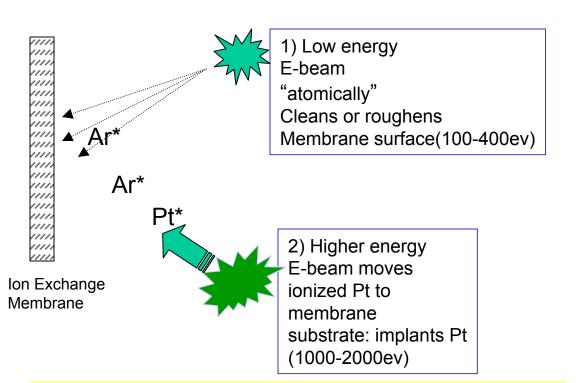
- Last year discussed CFP for poresize distribution/gradient construction
- Cobb titration derived from methods for developing absorptive media: measure wt. of mixed solvent absorbed internally
- Provides relative, qualitative data on hydrophobicity and porosity
- Unable to differentiate small ٠ differences
- CWRU will investigate more thoroughly as well as evaluate two other potential methods

# **Development of fg-ELAT**



Building the fg-ELAT:

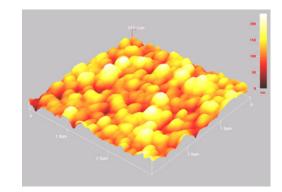
•Extensive characterization of ionomer dispersions prior to use •Controlling the final ionomer structure with process variables


- •Extensive porosity characterization correlated with EIS
- Qualitative hydrophobicity measurements
- Local environment of alloy must be different than Pt

Trend confirmed on NFC stack: alloy "super scales" but not over whole curve

Summary: extending "fg" approach to electrode

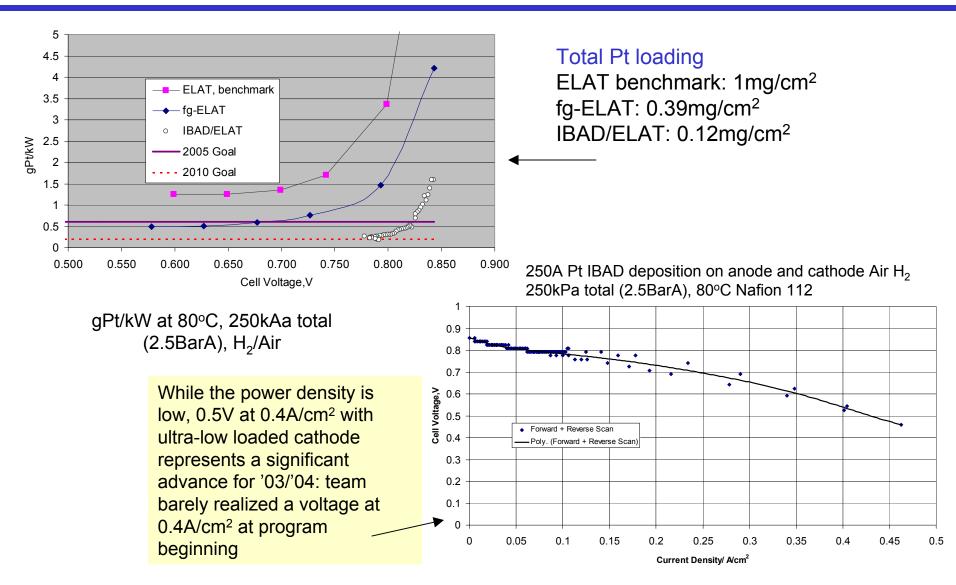
- Compares standard gradient Pt, standard gradient alloy (Pt:Cr), and a tuned fg-ELAT alloy (Pr:Cr)
- Pt Standard ELAT: good gas transport, limited proton transport; Alloy-ELAT: mass transport limitations, even at lower currents; alloy fg-ELAT: balance of transport mechanisms
- Pt and alloy ELAT all machine fab; alloy fg-ELAT is partially machine fab
- All fabrications
   ~0.5mg/cm<sup>2</sup> total metal
   on cathode


# IBAD :background



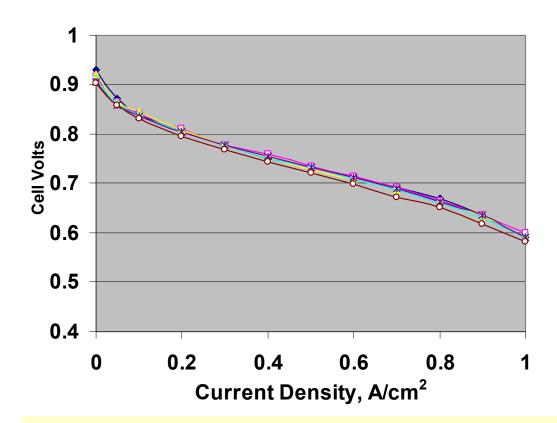
#### Conductivity, S/cm at RT

| Low E-<br>beam<br>power | Development<br>Membrane | Nafion<br>® 112 |
|-------------------------|-------------------------|-----------------|
| 0X                      | 0.217                   | 0.167           |
| 1X                      | 0.211                   | 0.164           |
| 3X                      | 0.208                   | 0.161           |
| 6X                      | 0.192                   | 0.159           |


Use AFM to measure surface roughness:  $250 \text{\AA}$  Pt on Nafion® 112



De Nora - DuPont- Nuvera DE-FC04-02AL67606


- 1) Membrane temperature remains 35-65 deg C
- Have shown very stable coatings: 4% loss of Pt on Nafion 115 in hot conc. HCl vs. 92% loss of Pt from 20% Pt/c
- 3) Key objective for Cathode is to create 3-D depositions

## Comparison of "IBAD", best fg-ELAT, and start-of-program benchmark: total PM/ power vs. V in "GM" format



National Lab Review May 2004 De Nora – DuPont- Nuvera DE-FC04-02AL67606

## Scale-up to Stack: Order of magnitude reduction in anode load confirmed at NFC (~10 cell short stack, 0.5 to 0.05mg Pt/cm<sup>2</sup>)



- Using structures derived from fine gradient experience on cathode, developed lowloading anode
- Assembly is a gas diffusion electrode laminated to Nafion® 112: catalyst is on GDL
- Ahead of plan for 1A3: demonstration of capabilities for machine-based coating
- Loading confirmed with XRF as well as mass balance during coating process

Open markers: three machine-made anodes (0.05 mg Pt/cm<sup>2</sup>) Solid markers: three machine-made 30% Pt/C (0.5 mg/cm<sup>2</sup>) All as anodes in Nuvera 225 cm<sup>2</sup> Cell Stack 150kPa total (1.5 barA), 70° C (one cell 20mV worse)

## Accomplishments/Progress

- Current Best: 0.78V at 0.4A/cm<sup>2</sup>, 0.85V at 0.1A/cm<sup>2</sup>, 0.39mg/cm2 total PM loading (have achieved power target with 0.5mg/cm<sup>2</sup>)
- Built up significant understanding for how to build fg-ELAT for alloy and realizing the potential of alloys at higher currents
- Program 1A3 ahead of plan: 50 ug/cm<sup>2</sup> Pt at anode shown at stack scale: trends for fg-ELAT cathodes reproduced at stack scale
- Starting to create "3-d" structures via IBAD for cathodes: 60 ug/cm<sup>2</sup> cathode, 120ug/cm<sup>2</sup> total PM loading very encouraging
- Baseline model for fg-ELAT established at CWRU starting verification phase

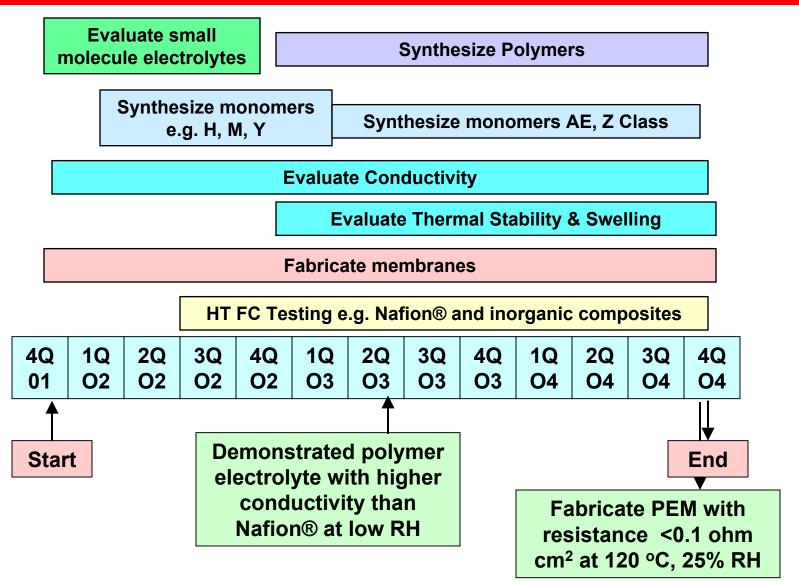
## **Responses to Reviewers**

- Need to understand catalyst/GDL interactions better
  - This became a focus area for this reporting period: the ability to tune the fg-ELAT architecture for the alloy demonstrated an increased understanding of these interactions
- fg-ELAT: current methodology is empirical, need better basis to guide structure designs
  - Started a subcontract with CWRU to model fg-ELAT whereby the output of model is specific measurable structural properties to guide construction efforts. We anticipate a benefit of this approach is further reduction of metal loading in a refined fg-ELAT structure
- Need more information on possible advancements in Catalyst/alloy work
  - While we have significantly advanced Pt/c (detailed '03) based on the structure-function approach, improvements made to the alloys were not realized in FC testing until this reporting period. We now anticipate additional advancements for the alloys based on an improved understanding of the electrode structure needed for the alloys

### Interactions and Collaborations: Technology Transfer

### Technology Transfer/Lessons Learned

- Goal of catalyst program is to improve activity and lower cost of transformation: Pt/c and alloys
  - Lessons learned in identifying processes that have lowered cost/improved activity have been transferred to Pt/C catalyst line
  - Have been able to keep price increases moderately low while Pt spot metal prices have increased almost 40% since start of work
- One challenge of "fg-ELAT" is producing detailed microporous layers with very low variations.
  - "Methods learned" have been applied to increasing yield during traditional machine ELAT production
  - Result is decrease of price for GDL/GDE products and higher quality


#### **Publications**

- <u>'</u>Oxygen Reduction Kinetics in Low and Medium Temperature Acid Environment: Correlation of Water Activation and Surface Properties in Supported Pt and Pt Alloy Electrocatalysts' V. Srininvasamurthi, R. C. Urian and S. Mukerjee, submitted to *J. Phys. Chem.*, (February, 2004) [Accepted]
- 'Oxygen Reduction and Transport Characteristics at a Platinum and alternative Proton Conducting Membrane Interface' L. Zhang, C. Ma and S. Mukerjee, *J. Electroanalytical Chemistry* (**In Press**)
- 'In situ determination of O(H) adsorption sites on Pt based alloy electrodes using X-ray Absorption Spectroscopy' M. Teliska, D. Ramaker, V. Srinivasamurthi and S. Mukerjee, submitted to *J. Phys. Chem.*, (submitted March 2004).
- 'Effect of Water Activation on the Activation Energy of Oxygen Reduction in a Polymer Electrolyte Interface', J. Jerome, A. Anderson, V. Srinivasamurthi and S. Mukerjee, Manuscript under preparation for submission to *J. Phys. Chem.*
- 'Oxygen Reduction and Structure Related Parameters for Supported Catalysts', **S. Mukerjee** and S, Srinivasan, *Handbook of Fuel Cells: Fundamentals, Technology and Applications, Vol. 2: Electrocatalysis*, Edited by W. Vielstich, H. A. Gasteiger and A. Lamm, John Wiley and Sons (2003).
- 'In situ X-Ray Absorption Spectroscopy of Carbon Supported Pt and Pt Alloy Electrocatalysts: Correlation of Electrocatalytic Activity with Particle Size and Alloying', **S. Mukerjee**, *Advanced Nanoparticles for Fuel Cells and Electrocatalysis*, Edited by A. Weickowski, E. Savinova, and C. G. Vayenas, Marcel Dekker, (2003).

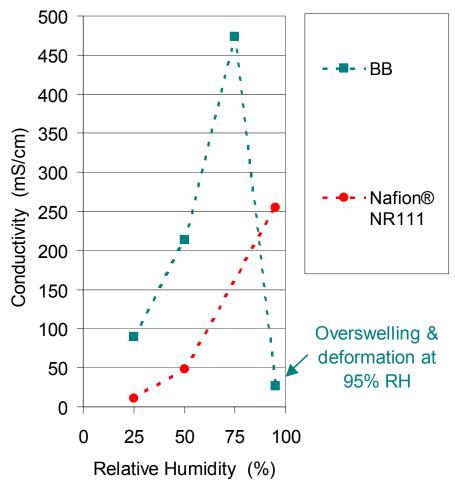
# Going Forward

- **Reduce PM loading** through "ink" based methods and fg-ELAT approach
  - Use CWRU/CAPI modeling to guide structure design
  - Follow structural refinements with quantitative methods to measure hydrophobicity (will pursue with CWRU)
- Catalyst
  - Scale up prep for improved alloys (binary)
  - Modify alloys to assess impact of catalyst hydrophilicity
    - Modifications are designed to tune catalyst to the structural needs of the electrode – not to inherently increase kinetic activity
      - Ternary catalyst and/or alternative support
- Scale up performance of fg-ELAT cathode to NFC stack
  - Part of this effort is translating hand-fab steps to machine process
- Develop IBAD
  - Focus on effects to further 3-D depositions on cathode as well as understanding for the conditions to activate catalyst depositions
  - Develop fg-ELAT architecture matched to IBAD/catalyst interface
  - Develop cathode alloys with IBAD
  - Develop methods to verify Pt loading
- Durability
  - Having identified successful "fg" structures and new preparations for alloy catalysts, durability program has just begun late Q1 2004 with NFC partner

### Program 1A2: High Temperature Membrane Approach & Timeline

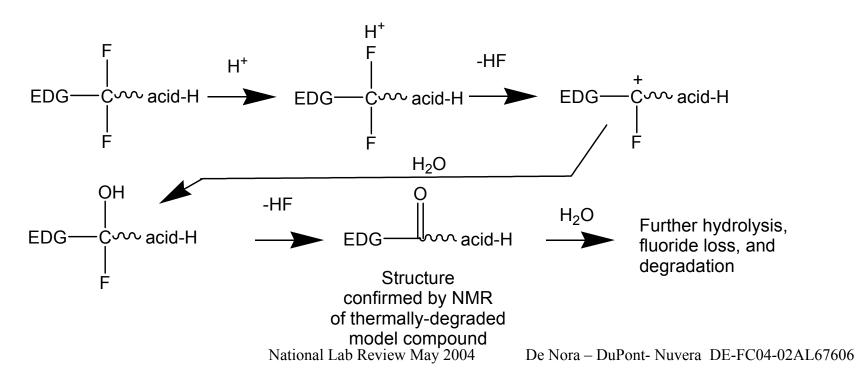


## Focus on Two Classes for HT Memb.


| Class                           | Monomer or<br>Polymer Memb. | Composite<br>or Graft<br>Memb. |
|---------------------------------|-----------------------------|--------------------------------|
| AE                              | AE                          | BC,BD*,BE*                     |
|                                 | AK                          |                                |
|                                 |                             |                                |
| Z                               | Z                           | AO                             |
|                                 | AW                          | BG                             |
|                                 | AY                          | AZ                             |
|                                 | AX                          | BA                             |
|                                 |                             |                                |
| AF                              | AF                          |                                |
| BB                              | BB                          |                                |
|                                 |                             |                                |
| *not made yet, synthesis active |                             |                                |

- Four classes of polymer electrolytes have been synthesized having significantly higher conductivity than Nafion® at 25% RH.
- Due to thermal instability of AF and BB, most of the focus last year has been on the AE and Z class ionomers.
- This small group still has some chemical diversity.
  - Different acid functionalities.
  - Some are aromatic.
  - Some are perfluorinated.
  - Some are heterocyclic.

## A Fourth Conductive Polymer Class


- Candidate BB is a high-MW filmforming fluorinated copolymer containing a new ionic monomer.
  - Had not been previously investigated in our project.
- Conductivity at low RH is high.
  - Confirms our optimism that it is possible to achieve conductivity significantly higher than Nafion®.
- Excessive water swelling and poor strength.
- Thermal stability is measured as only 14 hr @120 C.
  - Do not see a path to increase thermal stability of this class - no further effort is planned.

### Conductivity 120 °C; Avg of two labs



## **Progress on Z-Class Ionomers**

- Monomer Z scaled up to 350 grams
- AO was a composite membrane made using Z and a second high-strength polymer
  - High conductivity, reasonable swelling, low-thermal stability
- Determined the cause for the thermal instability of Z
  - Monomer Z had an electron donating group (EDG)



# **New Z-Class Ionomers**

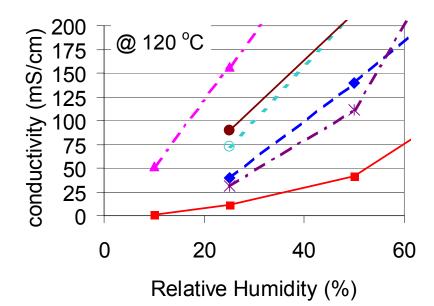
- Decomposition work led to design & synthesis of three new comonomers
  - AW, AX, AY All change the EDG to decrease the donation.
  - AY is an intermediate to AX; it is also a monomer in its own right.
  - Thermal stability of the original Z-monomer can be greatly increased!
  - The method of forming the composite membrane has allowed for only 66% AX so far. Believe better conductivity might be obtained.
- We are very excited about the prospects for achieving both conductivity and thermal stability with membranes based on AX.

|         | Quantity | Thermal Stability of Model | Thermal Stability,     | Conductivity |
|---------|----------|----------------------------|------------------------|--------------|
| Monomer |          | Compounds in Acid Form,    | Upper Limit to Life of | Composite    |
| wonomen |          | Vacuum Oven/NMR            | Composite Memb., est   | Memb 25%     |
|         | uale     | (Aggressive Low RH)        | @ 120C kinetic TGA     | RH (mS/cm)   |
| Z       | 350 g    | Starts to decompose 80 C   | 5 hr                   | 17-31        |
|         |          | Rapid decomposition 120 C  | 5 111                  |              |
| AW      | 150 g    | Stable 80 C                | 60,000 hr              | 0.4          |
|         |          | Rapid decomposition 220 C  | 80,000 m               |              |
| AX      | 30 g     | Stable 120 C               |                        | 14 to date   |
|         |          | Unchanged 24 hr 220 C      |                        | 14 to uale   |
| AY      | 300 g    |                            |                        |              |

## Status of AE

- AE polymer electrolyte:
  - Conductivity 70 mS/cm @ 120 C, 25%RH.
  - Thermal stability higher than Nafion®.
  - Excessive water swell and poor strength.
  - AE monomer has been synthesized in several 50 to 100 g batches.
- Approaches to reduce swelling and increase strength being investigated are composite membranes, polymerization, grafting, and crosslinking.
  - Significant effort was needed to identify and develop synthetic protocols for each of these four methods.
- Satisfactory results have not yet been obtained.
  - Both the polymerization chemistry and the immobilization chemistry are more difficult than with Z-type.
- We continue to work on this because AE has a better combination of conductivity and thermal stability than any other candidate we have tested.

# **Summary of Progress**


| Polymer<br>Electrolyte | Conductiv<br>ity @ 120<br>C, 25%RH<br>(mS/cm) | Upper Life<br>Limit<br>Kinetic<br>TGA @<br>120C (khr) | Reasonable<br>Mechanical<br>& Swelling |
|------------------------|-----------------------------------------------|-------------------------------------------------------|----------------------------------------|
| Nafion 1100EW          |                                               |                                                       |                                        |
| benchmark              | 8                                             | 120                                                   | Yes                                    |
| AM = p-PSEPVE          | 27                                            | 130                                                   | No                                     |
| AE                     | 73                                            | >1,000                                                | No                                     |
| AK                     | 68-156                                        | 0.005                                                 | No                                     |
| AO                     | 17-31                                         | 0.005                                                 | Yes                                    |
| BA                     | 14 to date                                    | ?                                                     | Yes                                    |
| AF                     | 40                                            | 0.039                                                 | No                                     |
| BB                     | 90                                            | 0.014                                                 | No                                     |

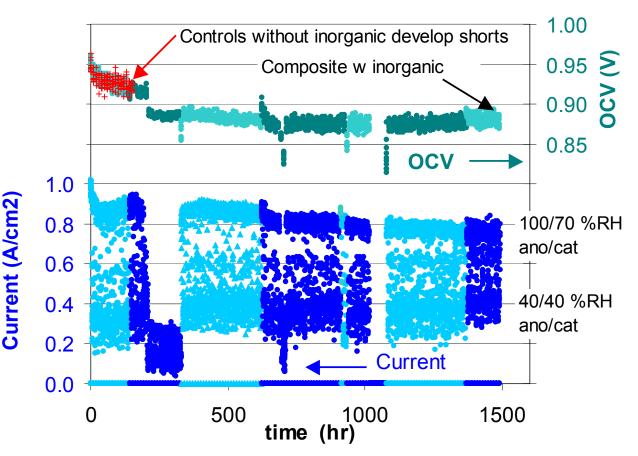
Kinetic TGA: Flynn, J.H. and L.A. Wall, Polymer Letters, 1966. **4**: p. 323-328.

 →
 N117
 - •
 - AE

 →
 AK
 - •
 - AF

 - \*
 AO
 BB




No candidate yet meets all three requirements.
 – Several candidates achieve two of these

## **Reviewers Comment**

- 2003: "Drop the composite approaches (inorganic fillers) because such systems (under load cycling) are prone to defect formation."
- Response: Admittedly, we have not obtained significantly higher conductivity at low RH with PFSA/inorganic. However, we find for one candidate evidence of increased durability under load cycling. We hope to be able to apply durability learnings to the new polymer electrolytes as they mature, and propose to pursue these tasks in parallel given the time constraint.

GDE = HT 140E-W ELAT® 120 °C H<sub>2</sub>/air 30 psig 25 cm<sup>2</sup> active area Const. flow = stoic of 2/2 anode/cath. @ 1.2 A/cm<sup>2</sup> Triple cycle: 10 min OCV 70/70 %RH 0.5V 5hr 100/70 %RH 0.5V 5hr 40/40 %RH

Changes in symbol shading indicated station restarts after various hardware/software failures. Low current at 208-339 hr is from humidifier failure.



## Interactions & Patents

- Sub-Sub-Contract to Case Western Reserve U. Prof. Morton Litt
  - Synthesis has begun of hydrocarbon membranes with "uncollapsible hydrophilic domains" - retain water at low RH.
  - New approaches may avoid stability problems associated with previous versions.
- Significant interactions with a number of stationary and transportation FC developers. They provide input on membrane needs and in some cases provide feedback on performance of prototype membranes.
- 5 patent applications filed on polymer electrolytes; 3 additional in preparation.

# Path Forward

- Continue to work to achieve simultaneously three properties of conductivity, thermal stability, swelling.
- AE Class
  - Develop method for immobilize AE to make membranes BD and/or BE.
- Z Class
  - Prove thermal stability of AX ionomer.
  - Work to increase the composite membranes to 70-80% AX or AY ionomer.
  - Develop methods of post-polymerization converting AY ionomers to AX ionomers.
  - If current approach fails, investigate composites with e-PTFE.
- If single-cell durability testing warrants, provide sufficient Nafion®/inorganic composite type to Nuvera for short-stack testing.

## Acknowledgements

### De Nora N.A. E-TEK div

- Yu-Min Tsou, Ph.D.
- Lixin Cao, Ph.D.
- Hua Deng, MS, ChE
- Chien Hou
- Michael Schneider
- Maria Cayetano
- Jeffrey Morse
- Laura Bellamy

#### <u>Spire Biomedical</u> Nadar Kalkhoran, Ph.D. Jason Burns





### Northeastern University

- Prof. Sanjeev Mukerjee
- Robert J. Allen (DNNA) Distinguished Visiting Scientist
- Andrea F. Gullá (DNNA.), Ph.D.
- Basker Veeraraghavan, Ph.D. (Postdoctoral Fellow)
- Madhusudan Saha, Ph.D. (Postdoctoral fellow)
- Vivek Srinivasamurthi (Ph.D. candidate)
- Kartikeyan Ramamoorthi (Ph.D. candidate)

<u>CWRU/CAPI</u> Tom Zawodzinski, Ph.D. Vladimir Gurau, Ph.D.





National Lab Review May 2004

#### Du Pont

- Mark Roelofs, Ph.D (Project Leader)
  - Mark Teasley, Ph.D.
- Zhenyu Yang, Ph.D.
- Rosa Ruiz-Alsop, Ph.D.
- John J. Borowski
- Robin Blackburn
- Charles Wheeler
  - David Lilly

<u>NFC</u> Olga Polevaya Stack Testing Team





De Nora - DuPont- Nuvera DE-FC04-02AL67606