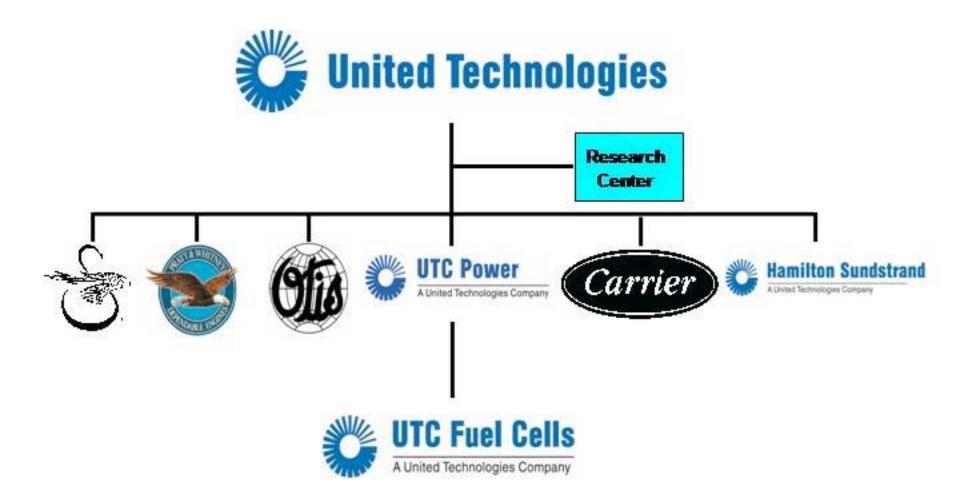
# 2004 DOE Hydrogen & Fuel Cells Technologies Merit Review Presentation

# 150 kW PEM Fuel Cell Power Plant Verification

Tom Clark


Tom.Clark@utcfuelcells.com

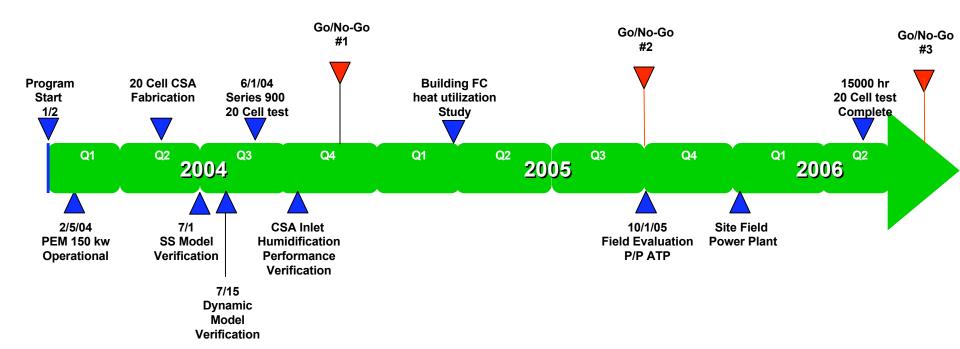
UTC Fuel Cells, LLC

May 26, 2004








#### UTC Fuel Cells Non-proprietary

The UTC Fuel Cells DOE Stationary Power Plant Program will resolve critical cell component, cell stack, and power plant reliability issues. Testing will be conducted in 20-cell stacks, and 150 kW power plants.

*This presentation does not contain any proprietary or confidential information.* 

### **DOE TOPIC 1 Project Schedule**

#### **Project Timeline**



# **Project Budget**

|                                 | FY    | Total<br>\$ | DOE Share<br>\$ | Contractor Share<br>\$ |  |
|---------------------------------|-------|-------------|-----------------|------------------------|--|
| 1 <sup>st</sup> Go / No-Go<br>→ | 04    | 3,188,266   | 1,753,546       | 1,434,720              |  |
| 2 <sup>nd</sup> Go / No-Go      | 05    | 4,402,607   | 2,421,433       | 1,981,174              |  |
| 3 <sup>rd</sup> Go / No-Go<br>→ | 06    | 4,091,142   | 2,245,281       | 1,845,861              |  |
|                                 | 07    | 7,194,483   | 3,744,352       | 3,450,131              |  |
|                                 | 08    | 2,383,197   | 1,191,598       | 1,191,599              |  |
|                                 | 09    | 523,222     | 261,611         | 261,611                |  |
|                                 | Total | 21,782,917  | 11,617,821      | 10,165,096             |  |

### **DOE Technical Targets**

Integrated Stationary PEMFC Power Systems Operating on Natural Gas

| Characteristics                                     | Units         | 2003                | 2005                | 2010                |                                                               |
|-----------------------------------------------------|---------------|---------------------|---------------------|---------------------|---------------------------------------------------------------|
| Electrical Energy Efficiency                        | %             | 30                  | 32                  | 40                  |                                                               |
| CHP Energy Efficiency                               | %             | 70                  | 75                  | 80                  |                                                               |
| Cost                                                | \$/kWe        | 2500                | 1250                | 750                 |                                                               |
| Transient Response                                  | Msec          | <3                  | <3                  | <3                  | Specially addressed in this contra                            |
| Cold Start-up time to rated power<br>@-20°C ambient |               |                     |                     |                     | Not Specially addressed in this                               |
| @+20°C ambient                                      | min<br>min    | <20<br><10          | <15<br><5           | <10<br><2           | contract as deliverable, but part of UTCFC's internal efforts |
| Survivability (min and max ambient temperature)     | °C            | -25<br>+40          | -30<br>+40          | -35<br>+40          |                                                               |
| Durability @<10% rated power degradation            | Hour          | 15,000              | 30,000              | 40,000              |                                                               |
| Noise                                               | dB            | <65<br>dBA@<br>10 m | <60<br>dBA@<br>10 m | <55<br>dBA@<br>10 m |                                                               |
| Emission<br>Combined NOx,CO, Sox                    | g/1000<br>kWh | <8                  | <2                  | <1.5                |                                                               |

5/26/2004

UTC Fuel Cells Non-proprietary

- 150 kW PEM Fuel Cell Power Plant Verification
  - Components
    - O. Stack Material and Manufacturing Cost
    - P. Durability
    - Q. Electrode Performance
    - R. Thermal and Water Management
  - Distributed Generation Systems
    - E. Durability
    - F. Heat Utilization
    - G. Power Electronics

Reference: www.eere.energy.gov/hydrogenandfuelcells/mypp

# **Project Objectives**

- Verify Reliability of low cost PEM cell stack components
  - Demonstrate reliability of cell stack components
    - 20 Cell Stack Development & Endurance Testing
- Improve the Durability of PEM CSA Technology
  - Improved Seals
  - Inlet humidification
- Verify the specification, durability, and reliability of natural gas fueled PEM power plant
  - Operate Beta-power plant as a 150 kW baseline
  - Field Evaluation 150 kW Power Plant
  - Demonstrate efficiency and reliability

# **Project Objectives**

- Verify a power plant can be connected to a distribution feeder with no adverse interconnection effects
  - Field Evaluation Power Plant 150 kW
    - Operate on CL&P distribution feeder
    - Confirm no interconnection issues
    - EPRI will extend results to range of U.S. feeders by analysis
- Analytically confirm useful application of PEM power plant heat
  - Market assessment of PEM waste heat utilization
    - Compatibility of desiccant humidity control and PEM will be determined

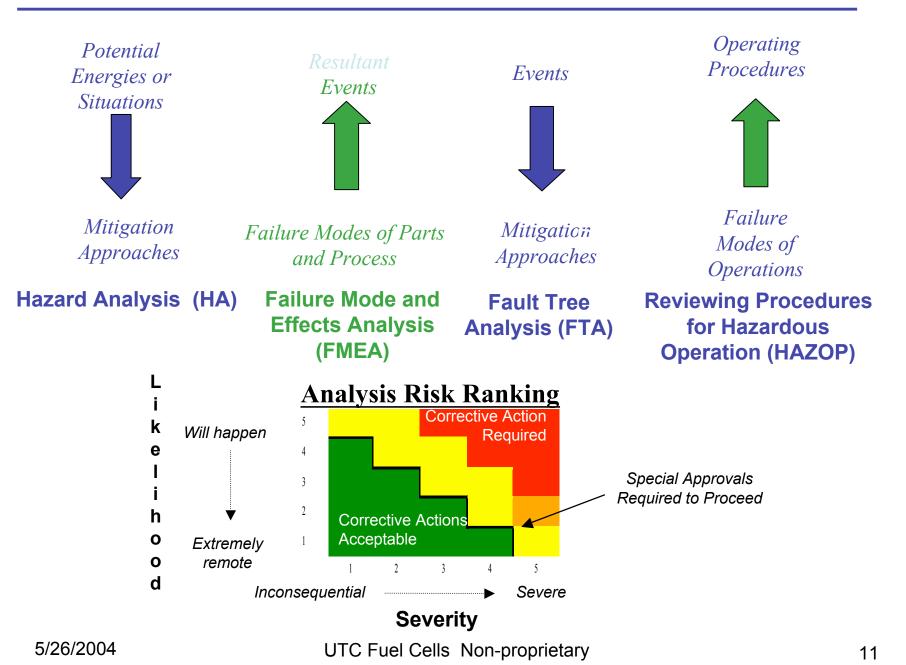
## Safety Aspects of Project

- Safety reviews of product design and product operation Codes and Standards, Hazard Analysis, FMEA, HazOps
- Layers of Protection Approach

Passive, Active, Reactive Mitigations Ventilation, Monitoring of Fuel Enclosure, Fuel Interlocks, Selection of electrical components in Zone 2 areas

Engineering change process applied

IPD team members review and approve


Functional verification of hardware/software changes

Operating procedures under revision control

Readiness reviews required for major changes, new equipment and chemicals. Highlights:

- » Hazards analysis and FMEA
- » Equipment functional checkout
- » Identification of preventative maintenance
- » Procedures and Energy Control
- » PPE assessment, training and communication

# Safety Analyses



# **Power Plant Testing**

### Objective

- Baseline PEM Beta 150KW Power Plant performance
  - Verify FPS start time and CO Levels
  - Tune controls for transient response
  - Calibrate Dynamic and SS model tools with actual data
  - Identify early reliability issues with BOP systems
  - Verify P/P start time
  - Optimize software for automatic startup and unattended operation

### **Power Plant Testing**

### **Technical Accomplishments**

#### Demonstration testing of beta-power plant

- Multiple daily runs: Typical 1 to 4 hour runs
- Controls tuned for hands off automatic startup
- Achieved maximum power of 139 kW DC / 117kW AC Net.
- CO performance from FPS less than 10 ppm
- FPS thermal management optimized
- Debugged subsystems and BOP (balance of plant) components
- P/P Start time reduced to 25 minutes
- Cathode Humidification/Energy Recovery Device operational

# Power Plant Testing Technical Accomplishments



|                                   | Requirement                                                     | Current                                        |
|-----------------------------------|-----------------------------------------------------------------|------------------------------------------------|
| Maximum<br>Power                  | 150 KWAC                                                        | 117 KWAC                                       |
| Number of<br>Start Stop<br>Cycles | 250 Cycles                                                      | 97 Cycles                                      |
| Run time                          | 15,000 hrs                                                      | 37 hrs                                         |
| FPS Exit CO                       | <10 ppm<br>(steady state)<br><100 ppm<br>(large step<br>change) | < 10 ppm<br><100 ppm<br>(small step<br>change) |
| Maximum<br>Continuous<br>Run      | 10 hrs @ max.<br>power                                          | 5.75 hrs up to<br>103 KWAC                     |

# S900 Development Testing Objective

•Demonstrate 15K hour durability on a S900 20 cell Cell Stack Assembly (CSA)

- Procure hardware to support the 20 cell CSA
- Document a test plan establishing test conditions and diagnostic requirements
- Construct the 20 cell CSA

# S900 CSA Development Testing Background

- S900 Cell plan form is designed for high durability
- S900 20 cell consists of:
  - 1. 20 UEA/WTP sets and seals
  - 2. Manifolds
  - 3. Axial load system
  - 4. Voltage pins and fittings for attachment to the test stand

# S900 CSA Development Testing Technical Accomplishments

Test plan complete defining

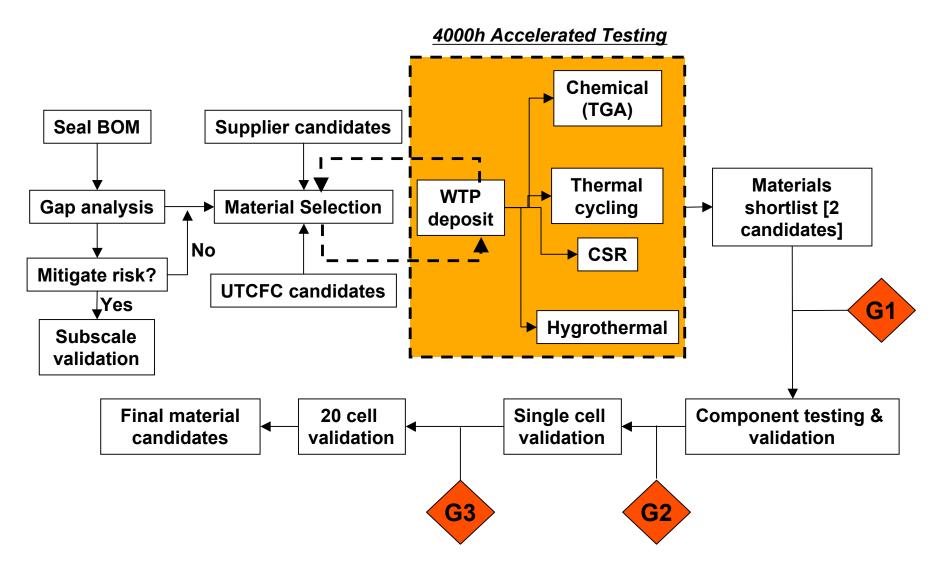
April 2004

- Flows, temperatures, power, utilizations and humidity
- Diagnostics
- Test stand interfaces
- Manifold & Axial Load system procured
  March/April 2004
  - 4 manifolds
  - 2 End plates
  - Fittings
  - Material for WTP's

# CSA Durability Objectives

- Develop a mathematical modeling to optimize inlet flow channel design for maximum humidification
- Determine root cause and corrective action for high severity / frequent CSA failure modes
- Identify seal materials with chemical and mechanical stability in a fuel cell environment
- Verify accelerated test conditions that demonstrate representative failure modes

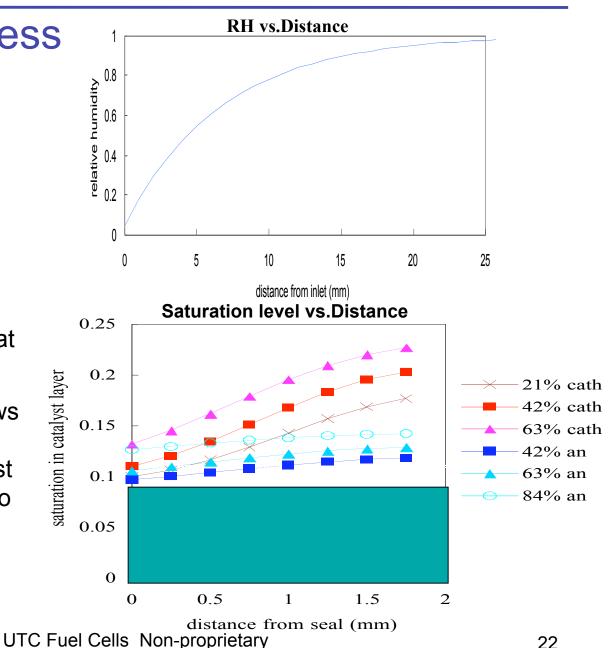
# CSA Durability Approach


- Focus on mechanisms identified in root cause analysis and with high severity x occurrence in FMEA
- Understand failure modes thoroughly to verify accelerated testing protocols
- Demonstrate superior humidification approach to extend membrane lifetimes
- Identify sealing systems with chemical and mechanical stability

# CSA Durability Accomplishments

- 15 seal material candidates identified and screening in process
- Modeled inlet zone of new cell stack configuration
  - Predicted humidification levels provide uniformly liquidequilibrated membrane over plan form

### CSA Durability


Seal Material Qualification Approach



# CSA Durability **Technical Progress**

 Membrane dry out region confined to < 5 mm inWTP system

- Grey zone indicates area at ٠ risk of membrane dry-out
  - New stack design shows entry region liquid equilibrated under worst case operating scenario



22

# CSA Durability Future Work

- Accelerated test protocols to be narrowed and verified
- Seal materials to be down selected in Q2 '04
- Inlet humidification state to be verified experimentally

### **Interactions and Collaborations**

### Subcontractors

- United Technologies Research Center
- Connecticut Light & Power
- EPRI
- Austin Energy
- New York Power Authority (NYPA)
- San Francisco Public Utilities Commission Hetch Hetchy
- Other Team Members
  - Connecticut Clean Energy Fund
  - Conservation and Load Management Fund (Northeast Utilities)

# Project Future Work

- Remainder of FY-2004
  - Complete Beta-power plant testing and establish baseline performance for PEM power plant
  - Continue PEM cell low cost component reliability and performance program
  - Initiate and complete market analysis comparing natural gas fueled PEM to hydrogen fueled PEM for stationary applications
- FY 2005 2009
  - Develop and demonstrate low cost, cell stack components with high durability and reliability
  - Validate PEM stack components and power plant design concepts in Field Evaluation Power Plant on Grid
  - Validate PEM power plant performance on feeder systems located in three areas of the U.S: Austin, TX; Albany, NY; and San Francisco CA.
  - Develop predictive base for PEM power plants on various distribution feeders

5/26/2004

UTC Fuel Cells Non-proprietary