

2004 DOE Hydrogen Fuel Cell And Infrastructure Technologies Program

Atmospheric Fuel Cell Power System for Transportation

Michael Tosca, UTC Power Matthew Riley, UTC Power

> May 25, 2004 Philadelphia

2004 DOE Hydrogen, Fuel Cell & Infrastructure Technologies Program Review Presentation Philadelphia May 24-27, 2004

This presentation does not contain any proprietary or confidential information.

Presentation Agenda

- Objective
- Technical Targets and Barriers
- Background/Approach
- Project Safety
- Program Schedule
- Technical Accomplishments/Progress
- Testing Progress
- Interactions and Collaborations
- Summary
- Future Challenges & Opportunities

Objective

To determine the feasibility of a on-board gasoline reforming 50 kW fuel cell power plant for commercial transportation applications based on the industry and DOE targets for commercialization.

Technical Targets and Barriers

Develop a 45% efficient reformer based fuel cell power system for transportation operating on clean hydrocarbon or alcohol-based fuel that meets emissions standards, a start up time of 30 seconds, and a projected manufactured cost of \$45/kW by 2010 and \$30/kW by 2015*.

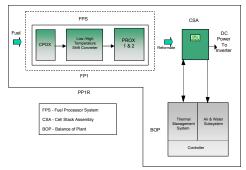
- Transportation Fuel Processors Technical Barriers (3.4.4.2)*:
 - I. Start-up/Transient operation
 - J. Durability
 - K. Emissions
 - L. H2 Purification/CO clean-up
 - **M. Integration/Efficiency**
 - N. Cost

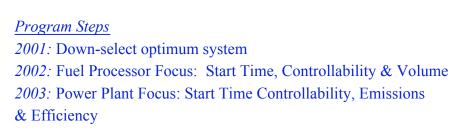
pts from: "Multi-Year Researchdr Development and Demonstration Blan, HECIDes June 3, 2003" Technologies Program Review Presentation Philadelphia May 24-27, 2004

Approach

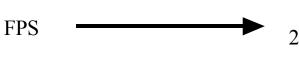
S400 Gasoline FCPP Phases

- Development in Two Phases (FY02 FY04)
 - Integrated Gasoline Fuel Processor (FY02 FY03)
 - Gasoline in, fuel cell-quality reformate out
 - Development Testing November 2002 June 2003
 - Data shown here
 - Integrated Fuel Cell Power Plant (FY03 FY04)
 - Assembly completed
 - Started testing in December 2003
 - ANL to conduct verification testing June 2004
 - Available data and projections shown here





Approach

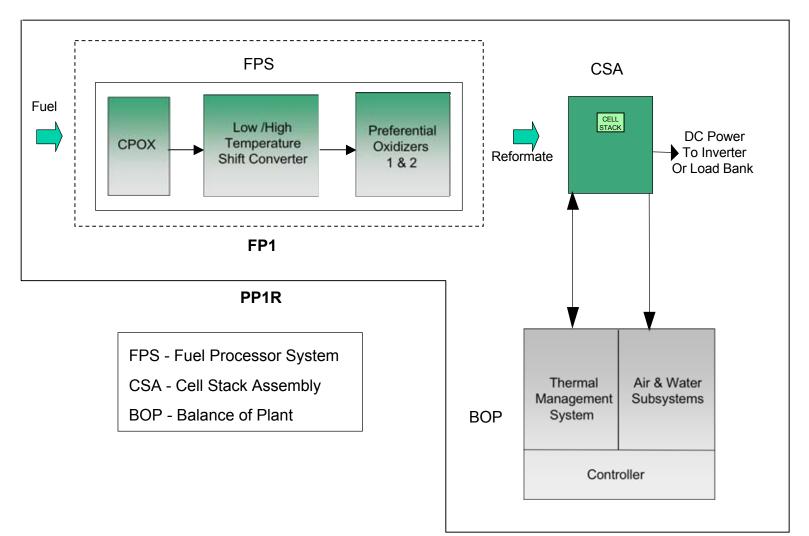

Current S400 Development 2001-2004

System Concept 2001:

FP1 2002-2003

PPIR 2003-2004

FP1 testing completed June 6, 2003


2004 DOE Hydrogen, Fuel Cell & Infrastructure Technologies Program Review Presentation Philadelphia May 24-27, 2004

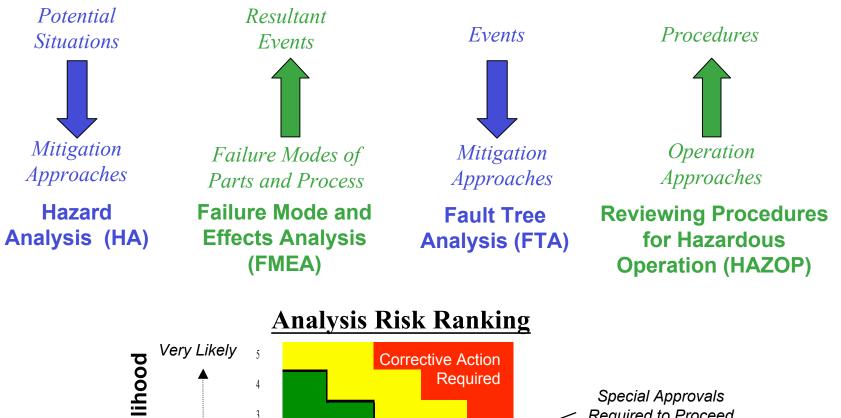
This presentation does not contain any proprietary or confidential information.

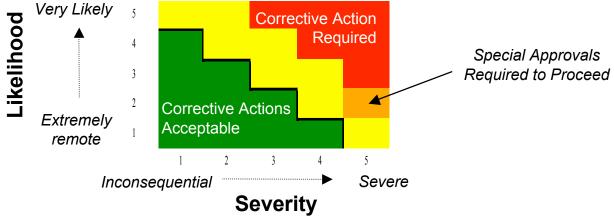
System Overview

Simple System Schematic

2004 DOE Hydrogen, Fuel Cell & Infrastructure Technologies Program Review Presentation Philadelphia May 24-27, 2004

This presentation does not contain any proprietary or confidential information.


Project Safety


- Safety reviews of product and test equipment design, and of test processes
 - Codes and Standards, Hazard Analysis, FMEA, FTA, HAZOP
- Standards for Areas with Hazardous Fluids
 - Ventilation and Ventilation Monitoring
 - Gas detection and Fire Suppression
 - Selection of electrical components in potentially hazardous locations
- Out of Limits Conditions
 - Burner and reactor controls
 - Ground fault detection
 - High Temperatures and High Pressures

Project Safety – Safety Analyses

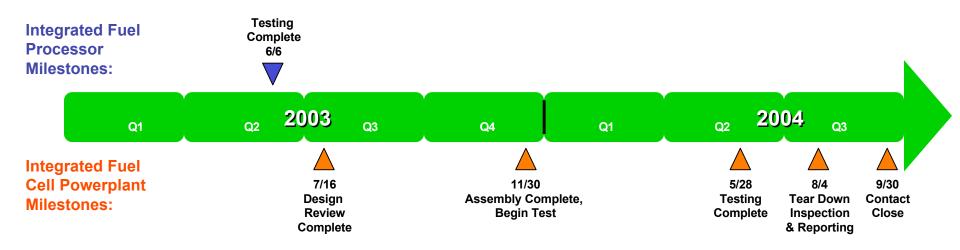
Project Safety – Management of Change

- UTC change process applied to product <u>& test equipment</u>
 - IPD team members review and approve
 - Safety Engineer involvement in IPD
 - Functional checkout of hardware/software changes
- Operating procedures under revision control
- Readiness reviews required for new equipment and chemicals, highlights:
 - Hazards analysis and FMEA
 - Equipment functional checkout
 - Identification of preventative maintenance
 - Procedures and Energy Control
 - PPE assessment, training and communication

Project Safety – Lessons Learned & Other Insights

Two Lessons Learned Examples:

- **Gasoline Heater Control Failure**: Failed solid state relay used for primary control of heater, secondary relays were part of sequential control instead of being continuous. Corrective action: change to continuous and adding further over-temperature redundancy
- Unintended Flow Path: Failed active component creates unintended flow path, i.e. blower fails to start, other flows find unintended path. Corrective action: improved flow confirmation and backflow prevention


Other Insights:

- Perform more safety analysis early in project design to identify and resolve safety issues
- Off normal states used for engineering or diagnostic purposes can create challenges. Consideration of all operating states (start-up, shutdown, transitions and off-design) in safety analyses.

Program Schedule – Current Plan

Integrated Fuel Processor

Integrated Fuel Cell Powerplant

2004 DOE Hydrogen, Fuel Cell & Infrastructure Technologies Program Review Presentation Philadelphia May 24-27, 2004

This presentation does not contain any proprietary or confidential information.

Accomplishments/Progress

Series 400 CPO-based FPS

- Benefits
 - No steam generator (smaller)
 - Fuel flexibility (Low sulfur gasoline, naphtha, diesel, F-T diesel, CNG, ethanol...)
 - Reformer durability on CA RFG II / III gasoline (desulfurization by UTC FC)
 - Faster start (lower mass) than ATR
- Start Time: 10 sec CPO ignition, ~5 min FPS
- Volume: 78L Packaged FPS
- Emissions: SULEV
- H₂ Production efficiency: ~75% FPS

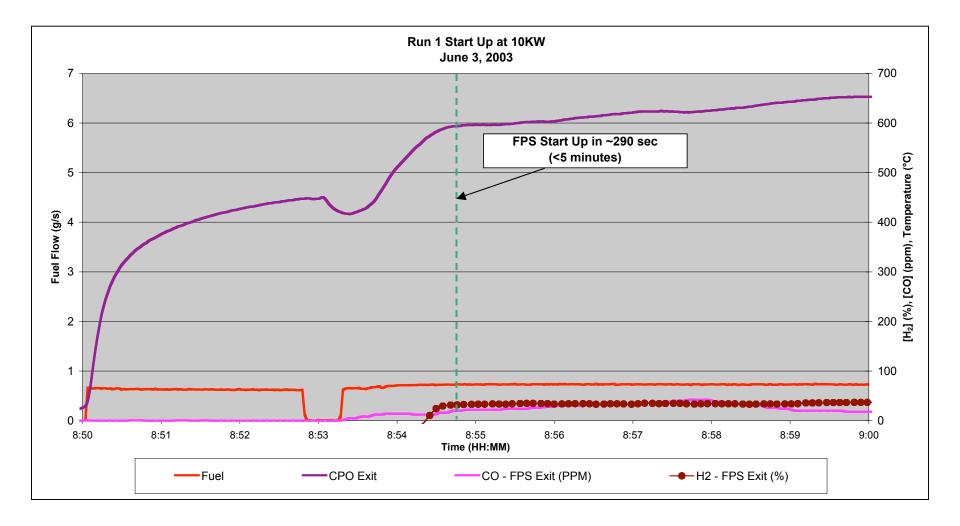
Accomplishments/ Progress – iFPS Results

Summary of S400 FP1 Testing Performance Data versus Targets

		Target	FP1 Test
	Data	-	
٠	FPS Volume, liters	75	78
٠	Heat up time, s	165	171
٠	Number of start/stops	500	111
•	Duration of operation (total hrs)	2000	232 hrs
	 Longest single run, hrs 		10 hrs
•	Range of equivalent power, kWe	10-50	10-50
٠	LHV efficiency, % at rated	<u>≥</u> 75	69%
٠	LHV efficiency, % below rated	≥ 70	69-72%

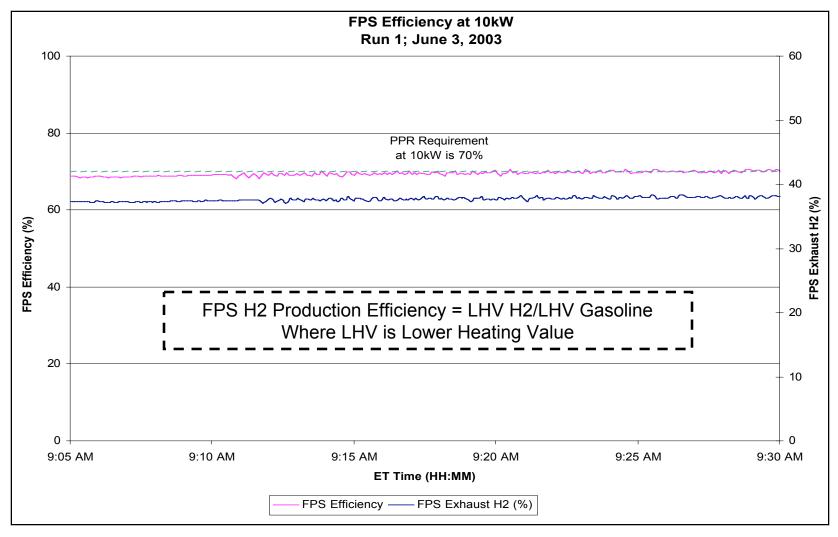
Accomplishments/ Progress – Powerplant Results

Summary of S400 PP1R Testing Performance Data versus Targets


		Target	PP1R Test
	Data		
•	PP1R Volume, liters	570	582
•	PP1R Mass, kg	455	690
•	Start Time (to 10kW Power), min	15	TBD
•	Number of start/stops	500	TBD
•	Duration of operation (total hrs)	1000	TBD
•	Maximum Net Power, kW	25-50	TBD
•	System Efficiency at 25% of rated (12.5kW)	<u>></u> 35	TBD
•	Ambient Operating Temperature	4 - 40°C	TBD

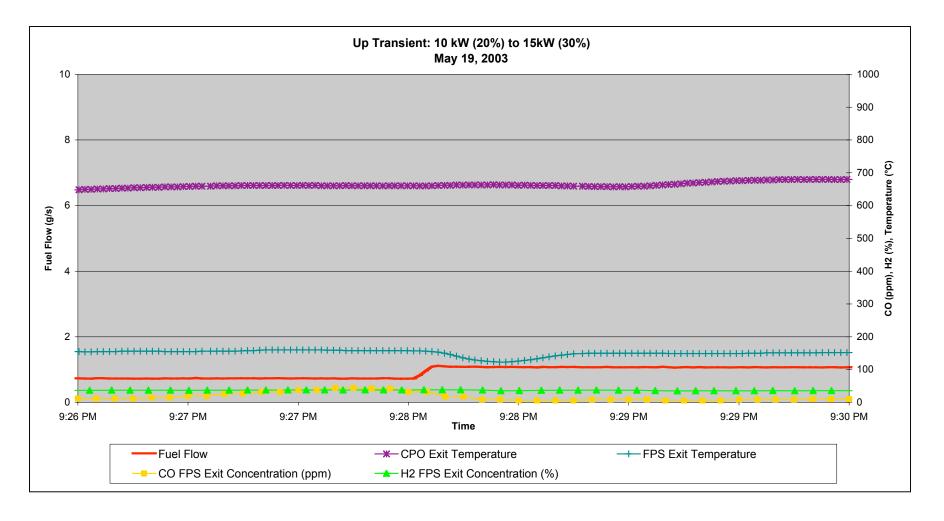
FP1 Test Results: Start Time

• Start time <5 minutes. Based on stability, H₂ and CO Concentrations



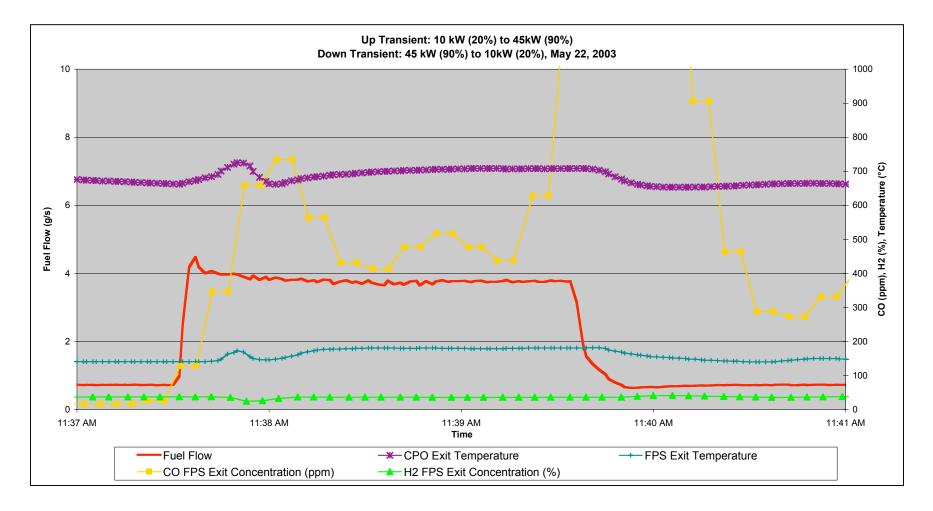
FP1 Test Results: FPS H₂ Production Efficiency

• H_2 Production Efficiency at 10kWe is ~70%



FP1 Test Results: Small Transient Performance

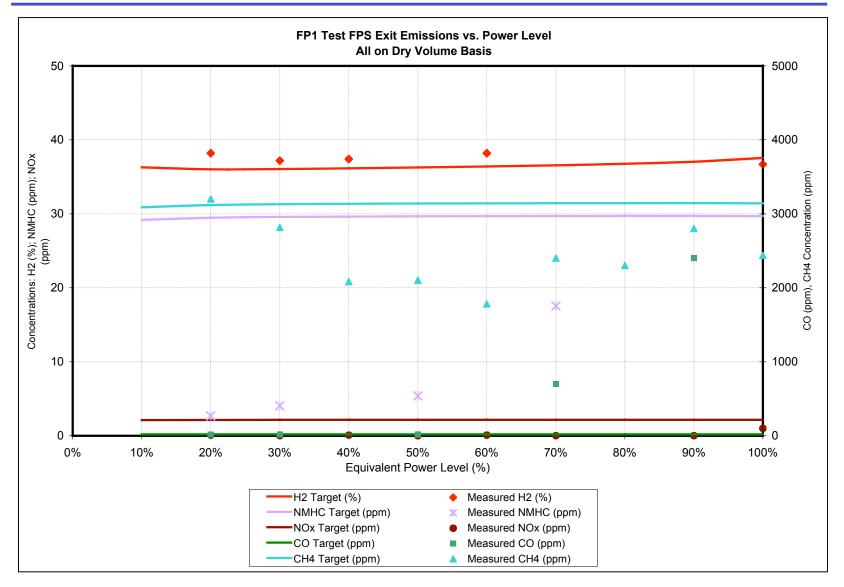
3.5 kW/s small transient. All stable, CO levels as desired



FP1 Test Status: Large Transient Performance

3.5 kW/s large transient. All stable, except CO levels high

FP1 Test Status: SULEV Emissions

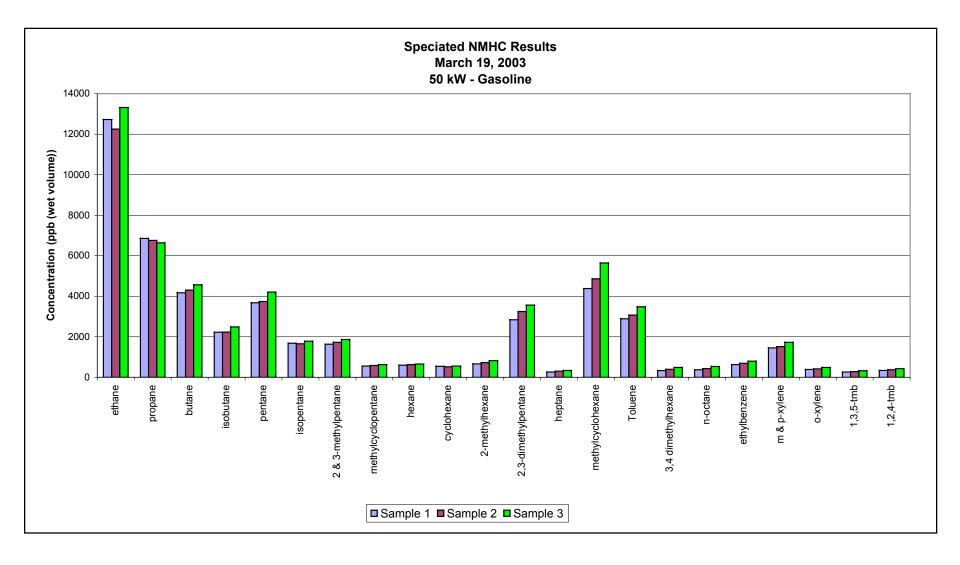

- Power plant emissions design goal was to be equal to or less than the 2004 Super Ultra Low Emissions Vehicle (SULEV) standards for vehicles <8500lbs, for CO, NOx and NMHC.
- The SULEV emission limits are specified in terms of g/mile. The emissions for FP1/PP1R were apportioned as total mass amounts for start up, and as concentrations during on-load based on the SULEV limits and the LA4-CH driving mode.
- A methane target of 700 ppm at the powerplant exhaust (3100ppm at FPS exit) and a NMHC target of 1ppm at the FPS exit were additional goals.
- The CSA limit for CO is 20ppm, which is lower than SULEV. The 20ppm target was used herein.

Steady State Goal	Result
$NOx \le 2.1 ppm$ (dry volume)	< 1ppm at all power levels
CO ≤ 20ppm (dry volume)	\leq 20ppm at power levels below 30 kW
CH4 ≤ 3100ppm (dry volume)	< 3100ppm at all power levels
NMHC [≤] 30ppm (dry volume)	\leq 30ppm at all power levels except 50 kW
Aromatics [≤] 1ppm (dry volume)	Average ~ 2ppm; Range: 0.1 to 10ppm

FP1 Test Results: FPS Exit Emissions and H2

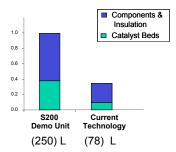
2004 DOE Hydrogen, Fuel Cell & Infrastructure Technologies Program Review Presentation Philadelphia May 24-27, 2004

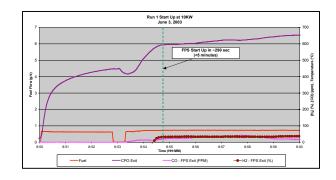
This presentation does not contain any proprietary or confidential information.


FP1 Test Status: Speciated Hydrocarbon Emissions

- In addition to the emissions testing was done to determine the unreacted non methane hydrocarbons (NMHCs) in the FPS exhaust.
- The total amount of NMHCs in the exhaust is very low
- Data is shown for three samples at 50 kW equivalent FPS operation. Data from 50 kW was used since the most species were measurable.

Test Results: NMHC Speciation at FPS Exit (~CSA inlet)

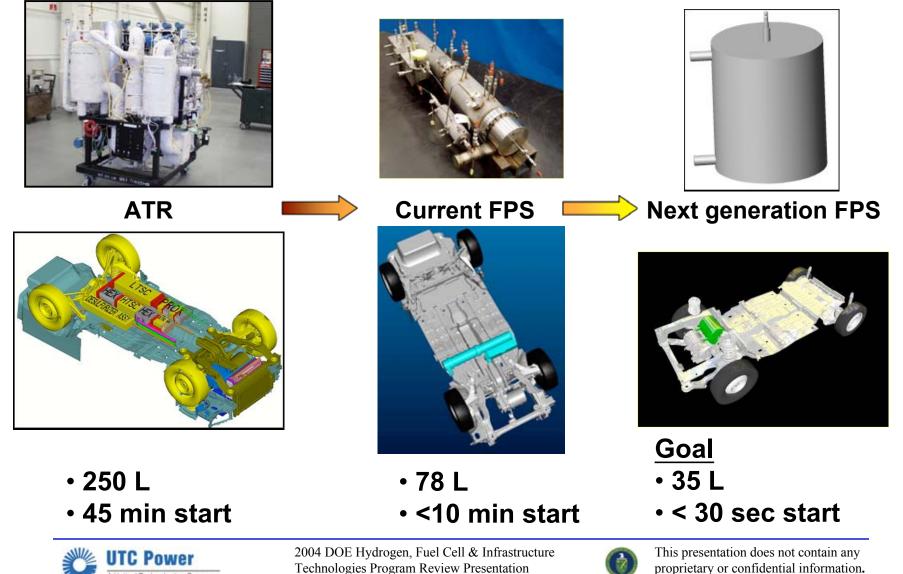




Summary/Future

- Significant progress made from S200 to S400
 - Weight
 - Volume
 - Start time
 - FPS Technology
 - CSA Technology

• Program ends in FY 04, remaining testing will be completed followed by complete teardown and analysis.



Future Challenges

A United Technologies Company

Gasoline reformer fuel cell power plants

Philadelphia May 24-27, 2004

Future Opportunities

FPS Technology Advancement

- Focus on Fuel Processor System (FPS) technology to:
 - Improved catalyst
 - Reduce start time
 - Evaluate membrane separation technology
 - Evaluate PSA technology
 - Reduce weight and volume
 - Improved controllability
- Focus on smaller applications, 5 kW APU size demonstrations and development

