
## Development of Sensors for Automotive PEM-based Fuel Cells

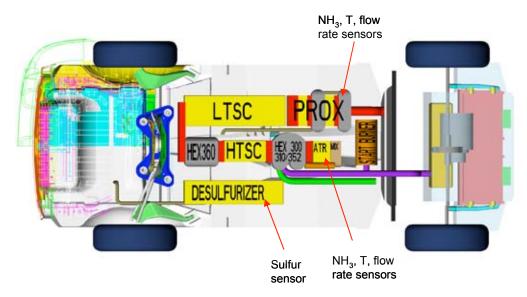
DOE Agreement DE-FC04-02AL67616



DOE Hydrogen and Fuel Cells 2004 Annual Merit Review



UTC FC Series 200 - 50 kW PEM


May 26, 2004



This presentation does not contain any proprietary or confidential information

# **Sensors for Automotive PEM Fuel Cells – Objectives**

Develop a technology and commercial supplier base for physical and chemical sensors required to optimize the operation of PEM fuel cell power plants for automotive applications with path to low cost (<\$20 / sensor) at 500k qty.

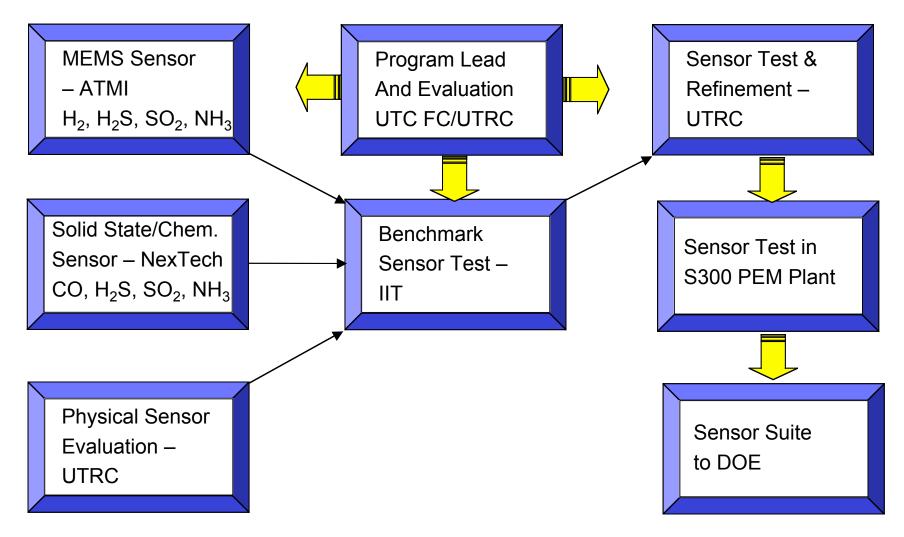


#### •Chemical sensors

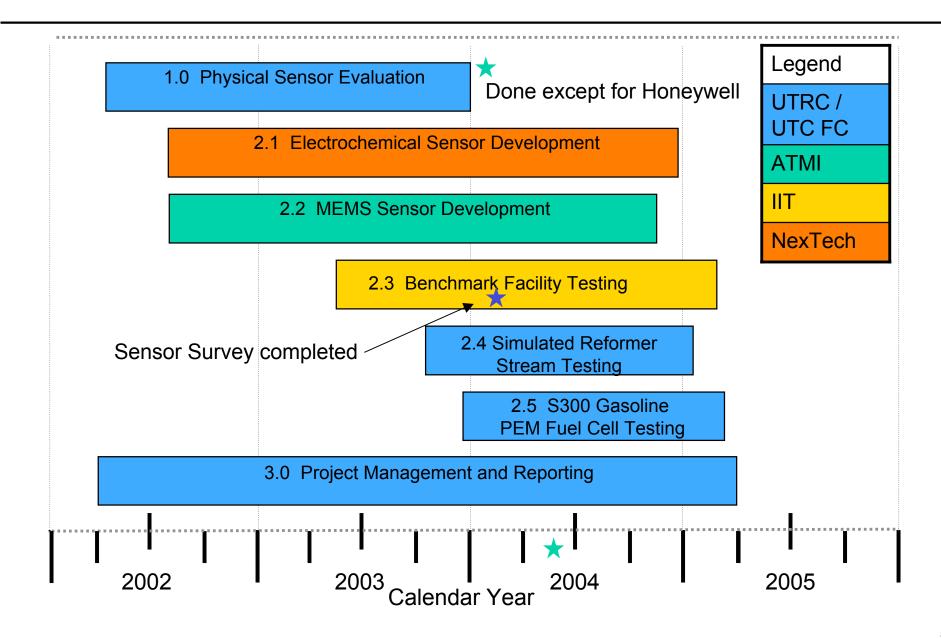
–Process streams: before, in, and after reformer, before and in fuel cell stack: CO,  $H_2$ ,  $O_2$ ,  $H_2S$ ,  $NH_3$ ; Safety [ $H_2$ ].

#### •Physical Sensors

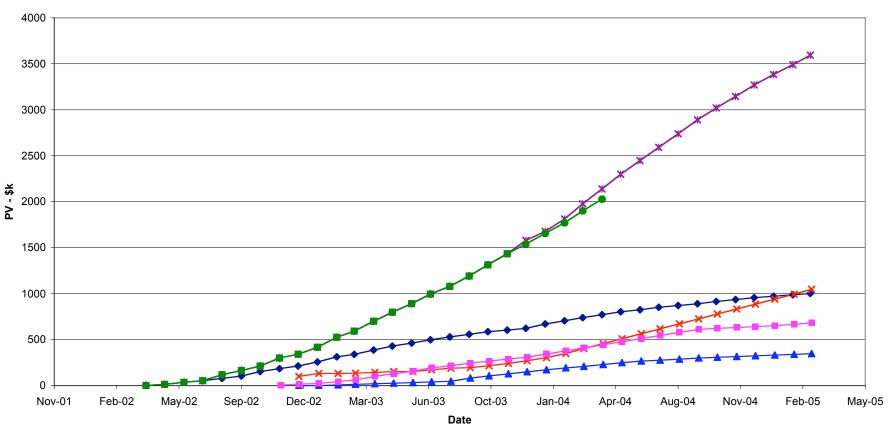
–Temperature, pressure, relative humidity, flow,  $\Delta P$ 


# Sensor Program Team Responsibilities

- Sensor development program utilizes a team approach
  - UTRC for physical and chemical sensor evaluation and program coordination
  - Illinois Institute of Technology (IIT) for chemical sensor evaluation
  - Advanced Technical Materials (ATMI) for MEMS sensor development
  - NexTech Materials for electrochemical and solid state sensor development


| Team    | Т | ΔΡ | RH | flow | <b>O</b> <sub>2</sub> | CO | H <sub>2</sub> | SO <sub>2</sub> | H <sub>2</sub> S | NH <sub>3</sub> | <b>Technological Expertise /</b> |
|---------|---|----|----|------|-----------------------|----|----------------|-----------------|------------------|-----------------|----------------------------------|
| Member  |   |    |    |      |                       |    |                |                 |                  |                 | Responsibility                   |
| UTC FC  | Χ | Χ  | Χ  | Χ    | Χ                     | Χ  | Χ              | Χ               | Χ                | Χ               | Testing on S300                  |
|         |   |    |    |      |                       |    |                |                 |                  |                 | Breadboard                       |
| UTRC    | Χ | Χ  | Χ  | Χ    | Χ                     | Χ  | Χ              | X               | X                | X               | Testing in reformate             |
|         |   |    |    |      |                       |    |                |                 |                  |                 | simulator                        |
| ATMI    |   |    |    |      |                       |    | Χ              | X               | X                | X               | Develop Using MEMS               |
|         |   |    |    |      |                       |    |                |                 |                  |                 | Silicon Microhotplate            |
| IIT     | Х |    | Х  |      | Х                     | Х  | Х              | Х               | Х                | X               | Testing in Benchmark             |
|         |   |    |    |      |                       |    |                |                 |                  |                 | Facility                         |
| NexTech |   |    |    |      |                       | Х  |                | X               | X                | X               | Develop Using Solid State        |
|         |   |    |    |      |                       |    |                |                 |                  |                 | Electrochemical                  |

# **Sensor Program Team Structure**


- Continuous interaction among team members
- ATMI, NexTech develop sensors, IIT and UTRC test and aid in optimization



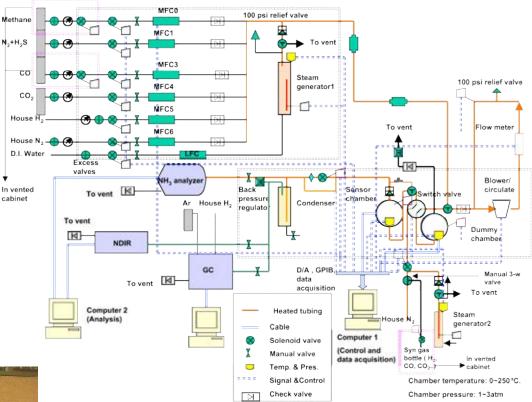
# **Sensors for Automotive Fuel Cells Plan**



# **Sensors Program Financial Status**



•Total cost: \$3.7MM; DOE cost: \$3.0MM (80%) UTC Cost Share: \$0.7MM (20%)
•Total expended to date: \$1.6MM


•Duration: April 2002 – March 2005

# H<sub>2</sub> Safety Issues Associated with Project

- Use of H<sub>2</sub> in laboratory environment
  - Flammable gas detectors located in laboratory; relay opens and turns off power to solenoid valves on  $H_2$  supply at 10% of LEL
  - LabView-based control program senses alarm, shuts off all other gases and purges all gas lines with  $N_2$
  - All valves used in experiment are explosion-proof
  - Pressure relief valves used in all piping to prevent over-pressurization of components
- Sensor technology
  - Heated sensing elements can provide an ignition source; therefore the detection element must be separated from the gas stream by a flasharrestor (porous plate) to prevent ignition of the bulk gas

#### **PEM Fuel Cell Gas Stream Simulators at UTRC & IIT**

Both test rigs operate under LabView control for 24/7 operation (data acquisition and test matrix completion)



Test chamber (25 - 450°C) Pressure: 1-4 atm



#### UTRC test rig with dual chambers

#### IIT test rig

# **Sensor Evaluation Status at UTRC**

Lei Chen and Brian Knight

- Physical Sensors
  - Sensors for T, P, ΔP, Relative Humidity (RH), and Flow evaluated in PEM fuel cell simulator in near-condensing flow regime
- State-of-the-art physical sensors meeting program needs selected
- Chemical Sensors
  - First round of sensor testing and qualification completed
  - Multiple H<sub>2</sub> sensors evaluated for sensitivity, selectivity, and performance
  - Possible extension of the testing effort beyond April 2005 being considered in order to accommodate field testing requested by Honeywell

# **Physical Parameter Sensors Results**

•UTRC researched and tested multiple physical

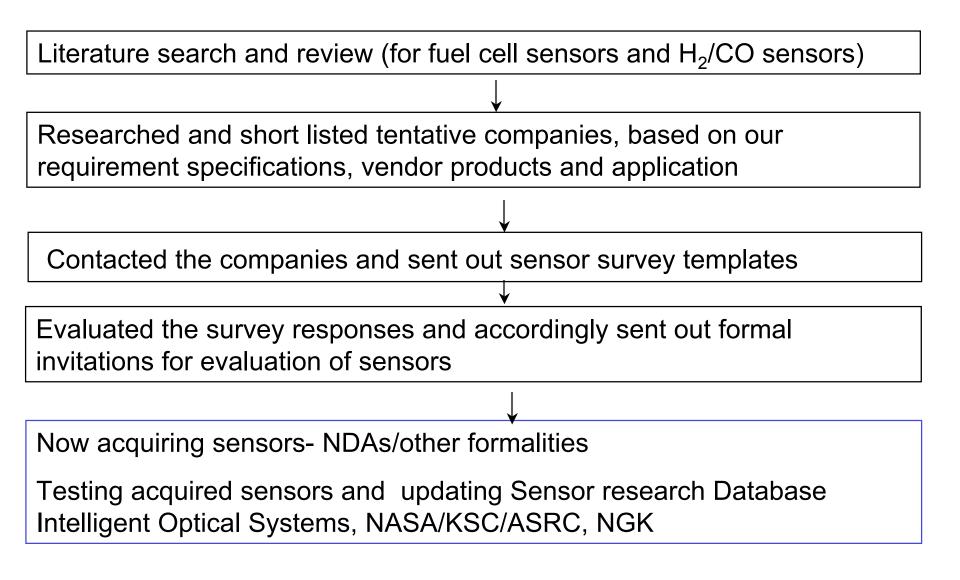
sensors; most promising tabulated below

| Sensor      | Operating<br>Principle                 | Positive<br>Attributes                   | Development<br>Needs                               |
|-------------|----------------------------------------|------------------------------------------|----------------------------------------------------|
| Temperature | Thermistor                             | 0 to 250 °C,<br>-40 to 750 °C            | Response time<br>needs<br>improvement              |
| Pressure    | Strain gauge<br>(Druck)                | Silicon based IC compatible fabrication. | May be mass<br>produced and<br>miniaturized        |
| RH          | Polymer<br>capacitive<br>(Panametrics) | 0 to 180 °C, 0-<br>100% RH               | Improve recovery<br>from condensing<br>flow regime |
| Flow        | Thermal dissipation                    | Most cost<br>effective                   | Response<br>fluctuation due to<br>condensation     |



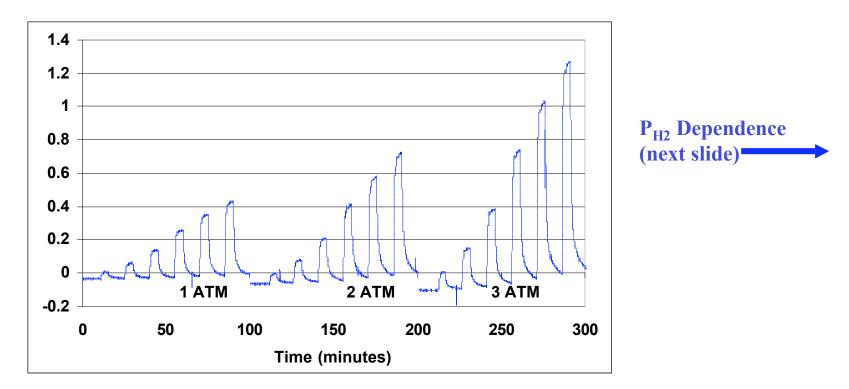
Joseph R. Stetter, William R. Penrose, William Buttner, and Kapil Gupta

- IIT evaluated over 70 H<sub>2</sub> sensing technologies
- Tiered approach used to evaluate sensor technologies
  - Gas concentration, operating temperature, water vapor pressure
  - Effect of pressure, other background gases
  - Long-term testing
- Hydrogen Sensors (Reformer)
  - -H2 Scan, Makel Engineering, ATMI, KSC NASA
- Hydrogen Sensors (Safety Application)


-H2 Scan, Applied Sensors, Makel Engineering, ATMI, Figaro, Transducer Technology, Inc., Argus Group, Nemoto Environmental Technology, Applied Nanotech

Carbon Monoxide Sensor

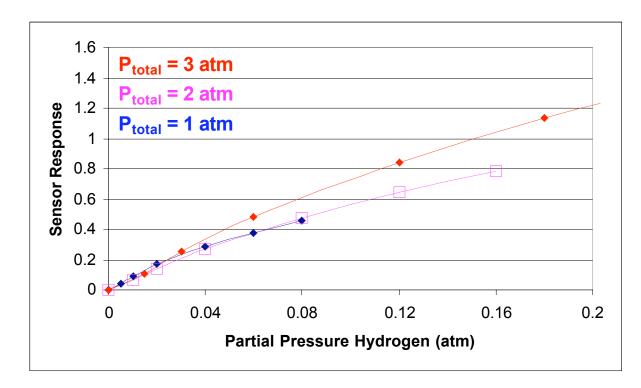
-NexTech Materials


(Sensors currently available are listed in blue)








#### SSTUF: Hydrogen Sensor Response (0.5 to 8%) in air

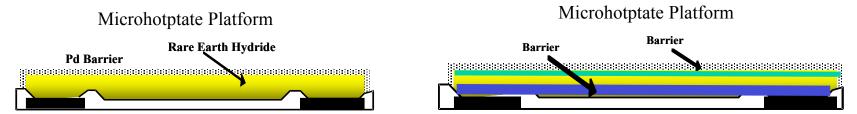


#### Single Data Run

- Sensitivity Curves obtained for different pressures at 22°C
- Automated Pressure Control, Flow Control and Concentration
- Capabilities also include Temperature Control and Humidity Control

#### Hydrogen Sensor Response (0 to 0.2 atm) in air



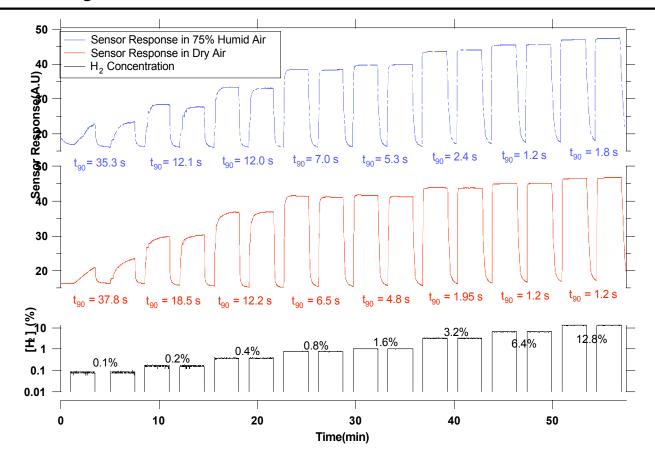

# Sensor Sensitivity is often controlled by Partial Pressure of $H_2$ (not % $H_2$ )

#### MEMS Sensor Development Task 1a Safety Sensor in Ambient Air



Ing-Shin Chen, Phil Chen, F. DiMeo, Jeff Neuner, Andreas Roehrl, Jim Welch

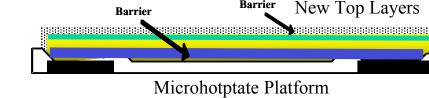
- Targets
  - [H<sub>2</sub>]: 0-10%; Temp: -30 to 80°C, Response time: < 1 s; Humidity: 10-98%; Selectivity from hydrocarbons; Accuracy: 5%; Lifetime:5 yrs
- Approach
  - Fundamental materials engineering and process control
  - Optimization of operating conditions




## Accomplishments

- Developed and tested alpha, beta systems
- Demonstrated performance against performance targets
- Delivered alpha prototypes for IIT, UTRC for evaluation

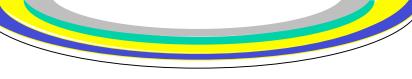
## MEMS Sensor Development Task 1a: Safety Sensor in Ambient Air






- Performance Demonstrated to date
  - [H<sub>2</sub>]: 0-12.8%; Operating Temp: ~80°C,
  - Response time: < 2 s @ 4%, 1.2s @ 6%</p>
  - Environment: 0–75% RH;

#### **MEMS Sensor Development Task 1b Pre Stack Monitor**

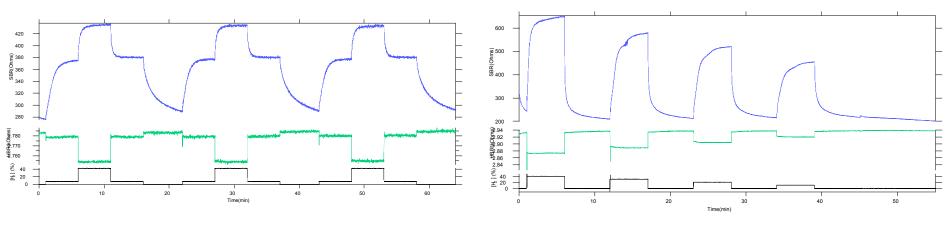

- Targets
  - [H<sub>2</sub>]: 1-100%; Temp: 70- 150°C; Response (T<sub>90</sub>):0.1-1 s; Environment: 1-3 atm total pressure, 10-30 mole % water, total H<sub>2</sub>, 30-75%, CO<sub>2</sub>, N<sub>2</sub> Accuracy: 1-10 % full scale
- Approach
  - Materials modifications of safety sensor design
  - Exploration of different transduction modes.



Barrier

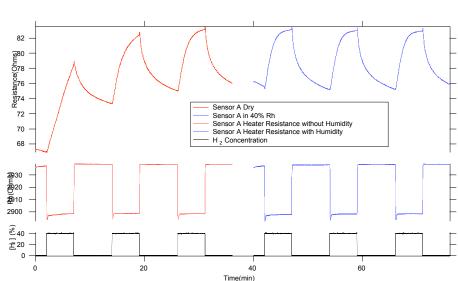
## Accomplishments

- Fabricated new materials combinations
- Investigated new transduction methods
- Delivered alpha prototypes to UTRC



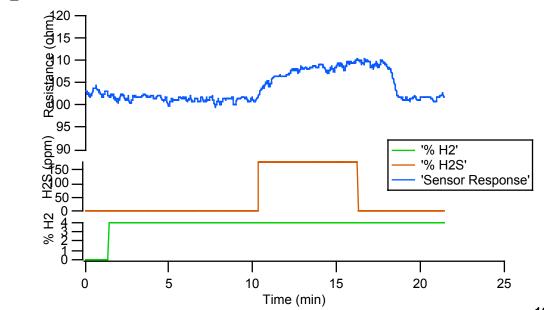

Piezo Resistive Transduction




## MEMS Sensor Development Task 1b Pre Stack Monitor

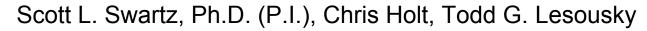


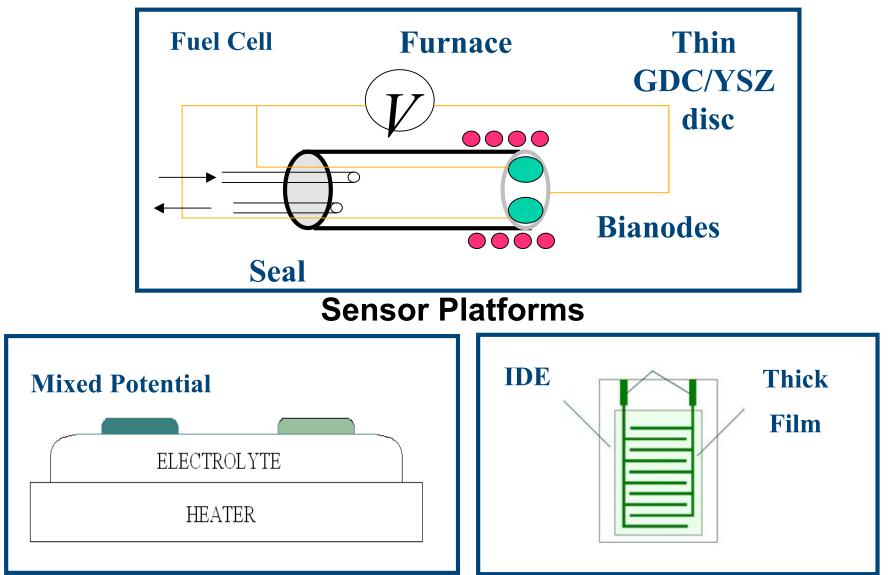



- Performance in Dry  $N_2$ 
  - 0-4-40% H<sub>2</sub>
    - 37 sec t90 0 4%
    - 2 sec t90 4 40%
  - -40 to 10% H<sub>2</sub>
    - 31.8 sec 0-40%
- Performance in 70% RH
  - Similar to dry N<sub>2</sub>

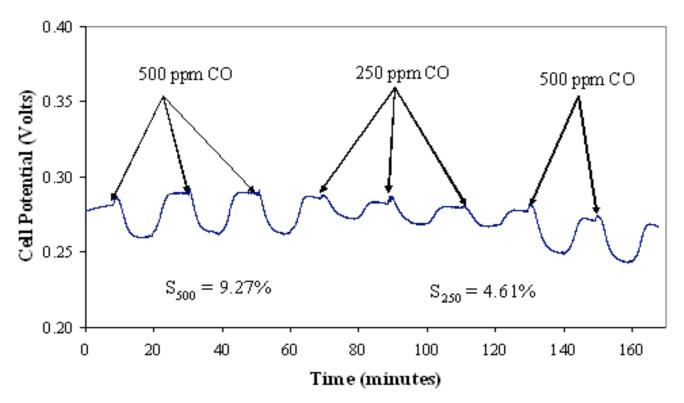
BQ-6-6B




#### MEMS Sensor Development Task 2 H<sub>2</sub>S Sensor Development


- Targets
  - Temp: 400°C; Range: 0.05 ppm -0.5 ppm; Response time: < 1 min at 0.05 ppm; Environment: H<sub>2</sub>,CO, CO<sub>2</sub> H<sub>2</sub>O
- Approach
  - Ultra thin ( < 50nm) metal film deposition on micro hotplate platform
- Accomplishments
  - Demonstrated first sensor response to  $H_2S$
  - 50 nm film responds to H<sub>2</sub>S
    - 160°C, 4% H<sub>2</sub>/N<sub>2</sub>,
    - 20% RH,
    - 180 ppm H<sub>2</sub>S




#### **NexTech Materials Sensor Development**

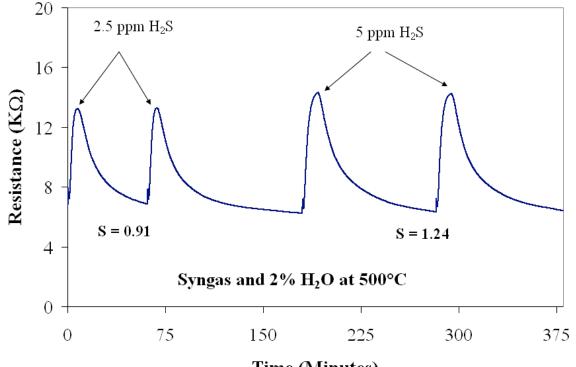
NEXTECH MATERIALS





## NexTech Sensor Development Task 2.1.1 Miniature SOFC Fuel Cell Sensor




- NexTech's SOFC sensor technology with electrodes engineered to respond to CO show reversible and quantitative response to CO in wet N<sub>2</sub>/H<sub>2</sub>.
- Future work will focus on schemes to improve sensitivity for 0-100ppm CO range and testing cross-sensitivity to alternate syngas components

**NEXTECH** 

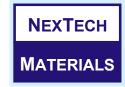
MATERIALS

## NexTech Sensor Development Task 2.1.2 Hydrogen Sulfide Sensors

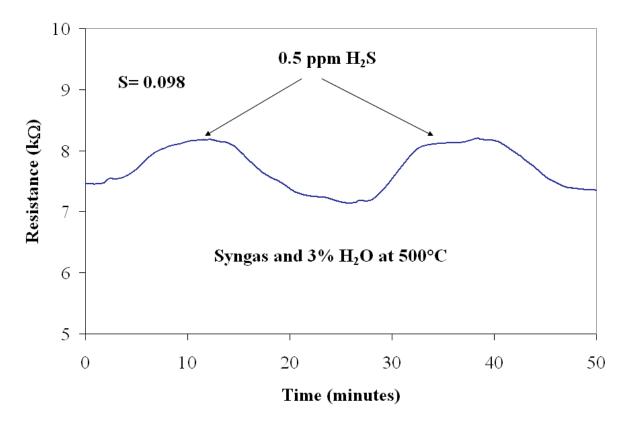
 Metal oxide based chemi-resistor (not electrochemical sensor) exhibits reversible and quantitative response to H<sub>2</sub>S



Time (Minutes)

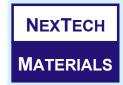

- NexTech is currently evaluating various dopant schemes to reduce the temperature of operation
- Beta prototypes scheduled for early June

**NEXTECH** 


MATERIALS

## **NexTech Sensor Development**

## Task 2.1.2 Hydrogen Sulfide Sensors




Metal Oxide films show reversible response to H<sub>2</sub>S concentrations at 0.5 ppm in syngas (goal of 0.05 – 0.5 ppm).



•Future work will focus on measuring lower sulfur concentrations and crosssensitivity to individual syngas components.

## NexTech Sensor Development Task 2.1.3 Ammonia Sensor Response



300 N<sub>2</sub>/10 ppm NH<sub>3</sub> T=25°C S=8 250 NexTech's metal halide ammonia sensor Resistance (KΩ) 200 shows very high sensitivity at low 150 temperature 100 50 N<sub>2</sub>  $N_2$  $N_2$ 0 100 200 300 500 400 600 90 Time (Minutes) 5ppm NH<sub>3</sub> 85 Resistance (KQ) 80 Sensor responds reversibly in  $N_2/H_2$ 75°C at 75 Future work will focus on improving high 70  $N_2/H_2$ temperature sensitivity and measuring  $N_2/H_2$  $N_2/H_2$ 65 cross-sensitivity to other syngas 60 components. 20 100 0 40 60 80 Time (Minutes)

## Responses to Previous Year Reviewers' Comments

- "..difficult to assess technical approach and progress"
  - Physical sensor evaluation completed
  - H<sub>2</sub> LEL sensor developed
    - Best response times <1 s, average ~14s; sensor drift rate < 0.16% / day
  - Stack H<sub>2</sub> sensor developed
    - Dynamic response up to 40%  $H_{2}$ ,  $H_{2}$  levels up to 70%, with humidity
    - Fast response ( $T_{90}$ <2 sec) with Pd
    - New devices shows promise; minor cross sensitivity with CO; Drift <0.2% in 4% H<sub>2</sub>
  - Multiple strategies identified for sensing CO in reducing environments; CO sensitivity established in humid environments
  - Multiple strategies for sulfur
    - ATMI- 50 nm Metal Foil shows response to  $H_2S$
    - -NexTech
      - H<sub>2</sub>S/SO<sub>2</sub> sensor materials identified
      - PPM level detection demonstrated

Ammonia sensor easily packaged in a chemi-resistor format

## Sensors for Automotive PEM-based Fuel Cells Project

#### Team organization

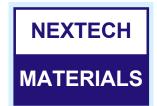


DOE program manager and technical advisor:



#### **Research Center**

| Name          | Affiliation | Phone        | E-mail                   |
|---------------|-------------|--------------|--------------------------|
| Nancy Garland | DOE         | 202-586-5673 | nancy.garland@ee.doe.gov |
| Robert Sutton | ANL         | 630-252-4321 | sutton@cmt.anl.gov       |


#### Contractor and subcontractor PIs:

| <u>Name</u>  | Affiliation | <u>Phone</u>       | <u>E-mail</u>               |
|--------------|-------------|--------------------|-----------------------------|
| Tom Clark    | UTPWR       | 860-727-2287       | tom.clark@utpwr.com         |
| Brian Knight | UTRC        | 860-610-7293       | knightba@utrc.utc.com       |
| Frank DiMeo  | ATMI        | 203-794-1100 x4279 | fdimeo@atmi.com             |
| Joe Stetter  | IIT         | 312-567-3443       | <u>stetter@iit.edu</u>      |
| Scott Swartz | NexTech     | 614-842-6606 x103  | swartz@nextechmaterials.com |





Transforming Lives. Inventing the Future. www.iit.edu

