Hydrogen, Fuel Cells & Infrastructure Technologies Program 2004 Annual Review Philadelphia, Pennsylvania, May 24-27, 2004

Direct Methanol Fuel Cells

Eric Brosha, John Davey, Fernando Garzon, Christine Hamon Yu Seung Kim, Manoj Neergat, Piotr Piela, Bryan Pivovar Gerie Purdy, John Ramsey, John Rowley, Mahlon Wilson

and

Piotr Zelenay

Los Alamos National Laboratory Los Alamos, New Mexico 87545

DOE Program Manager: LANL Program Manager: Nancy Garland Ken Stroh

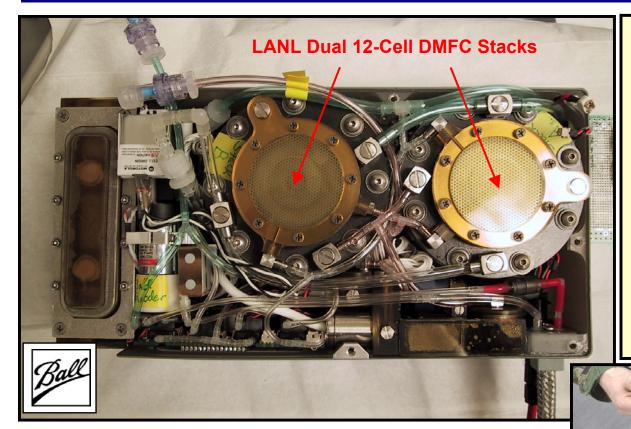
This presentation does not contain any proprietary or confidential information

Catalyst Research & Development

Johnson Matthey: Dr. David Thompsett – Pt-Ru catalysts for the anode Superior MicroPowders: Dr. Paolina Atanassova – DMFC MEAs E-TEK / de Nora North America: Dr. Emory de Castro – anode and cathode catalysis University of Illinois: Prof. Andrzej Wieckowski – basic electrocatalysis University of New Mexico: Prof. Plamen Atanassov – non-precious metal catalysis

Membranes / Membrane-Electrode Assemblies

Virginia Polytechnic: Prof. James McGrath – alternative polymers and *MEAs with significantly improved selectivity and durability W. L. Gore: Dr. Karine Gulati* – membranes with improved selectivity


DMFC Stacks & Sensors

Mesoscopic Devices: Drs. Christine & Jerry Martin – DMFC hardware for portable applications; electrocatalysis Ball Aerospace: Dr. Jeff Schmidt – 20 W portable power system for the military (DARPA Palm Power Program)

Collaboration with Ball Aerospace (C)

Portable Power System for DARPA

Key System Specs

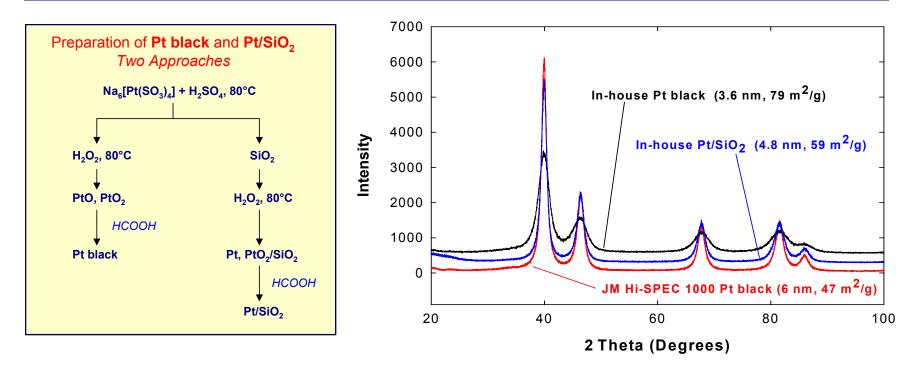
Rated power:	20 W
Voltage:	12 V
Specific power (72 h mission):	500 W/kg
Efficiency:	33%
Energy yield from fuel:	2 kWh/kg
Converter volum	e: 1.6 L
Converter weight	t: 1.6 kg

• LANL DMFC stacks and methanol concentration sensors integrated by Ball Aerospace into first DMFC-20 demonstration units for the military

Respectable specific power & system efficiency

Hydrogen, Fuel Cells & Infrastructure Technologies Annual Review, May 24-27, 2004

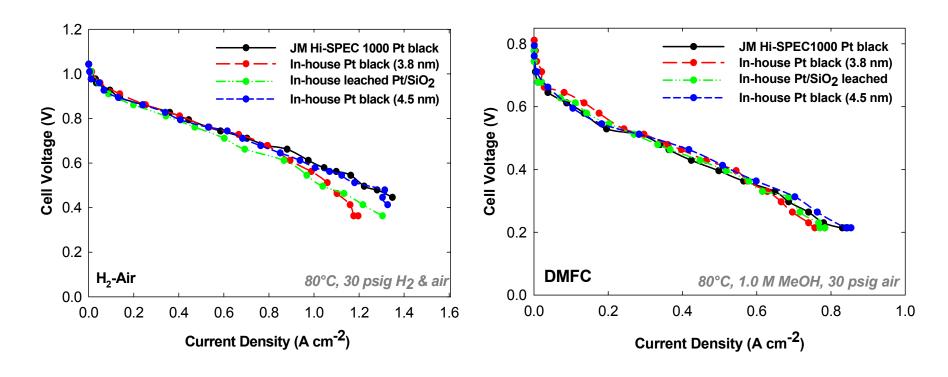
- Determine the impact of Ru crossing on the oxygen reduction kinetics at the DMFC cathode. March 2004
- Develop methods for synthesis and demonstrate new unsupported DMFC cathode catalyst with average particle size reduced by at least 40% and performance superior to the best commercial cathode catalysts. – March 2004
- Quantify losses in the active surface area of the anode and the cathode over at least 200 h of DMFC operation. September 2004


• Total DOE Funding: \$300 K

Irrespective of repeatedly high evaluation scores (3.33 in FY 2003), funding of the LANL DMFC project has been decreased in FY 2004. Reason given: "Technology for portable power applications is near commercialization"; HFCIT Program, FY 2003 Merit Review and Peer Evaluation Report.

Electrocatalysis Research

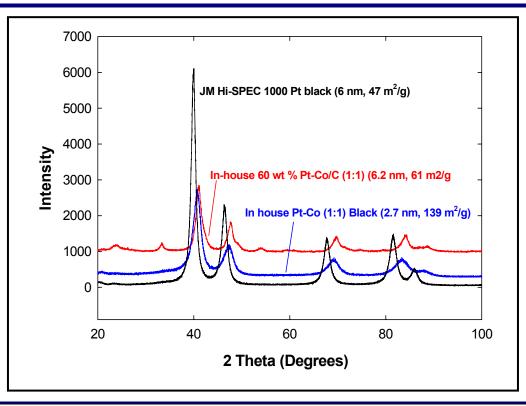
Pt Cathode Catalysts with Reduced Particle Size: Approach and XRD Patterns


 Average particle size reduced from 6 nm (Johnson Matthey's HiSPEC™ 1000, the state-of-the-art Pt black catalyst for DMFCs) to 3.6 nm and 4.8 nm, for Pt black and Pt/SiO₂ catalysts, respectively.

40% higher dispersion of Pt cathode catalyst achieved (2004 Milestone)

Hydrogen, Fuel Cells & Infrastructure Technologies Annual Review, May 24-27, 2004

Electrocatalysis Research *Pt Cathode Catalysts with Reduced Particle Size: Fuel Test Cell Data*


- Performance of newly synthesized Pt catalysts matches that of the best commercial DMFC cathode catalysts.
- Catalyst utilization needs to be improved in order to take full advantage of the smaller particle size of LANL's catalysts.

Hydrogen, Fuel Cells & Infrastructure Technologies Annual Review, May 24-27, 2004

Electrocatalysis Research

Pt-Co Binary Cathode Catalysts

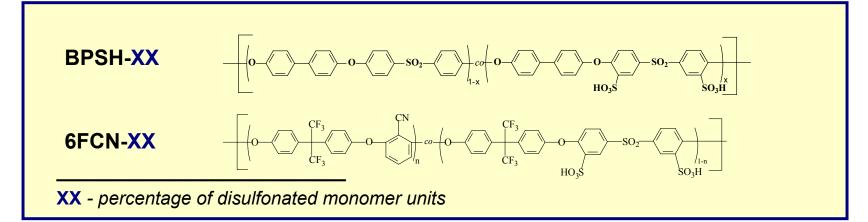
- Developed two new synthesis approaches for Pt-Co binary catalysts.
- High temperature method: Uniquely high metal-loading for Pt-Co/C catalyst (up to 60 wt%) and small average particle size (6.2 nm).
- Low temperature method: Very small average particle size of unsupported catalyst (~ 2.7 nm – 55% particle size reduction relative to HiSPEC[™] 1000).

Hydrogen, Fuel Cells & Infrastructure Technologies Annual Review, May 24-27, 2004

Membrane / MEA Research Objectives

Alternative aromatic hydrocarbon-based membranes for fuel cells:

- ✓ High conductivity, good mechanical properties and chemical stability
- ✓ Low methanol permeability
- At least an order of magnitude lower cost

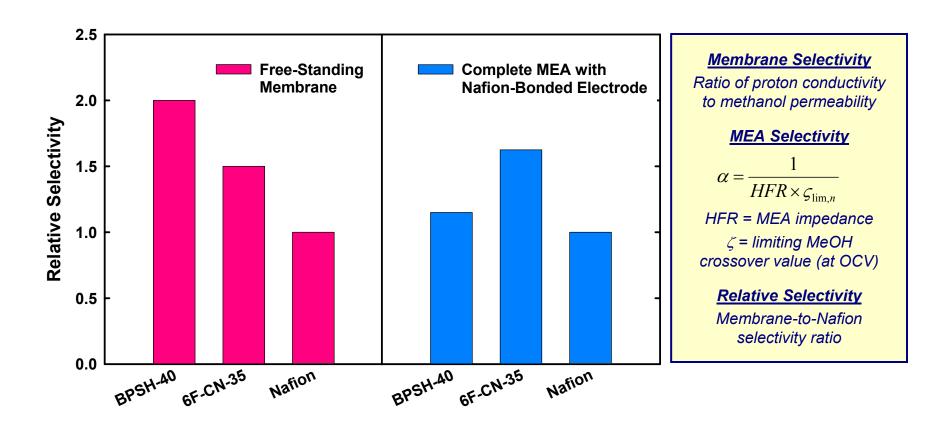


Key technical issue:

✓ Performance loss due to interfacial incompatibility with Nafion-bonded electrode

Research focus

- Develop membranes compatible with Nafion-bonded electrodes
- ✓ Determine initial and long-term fuel cell performance of MEAs

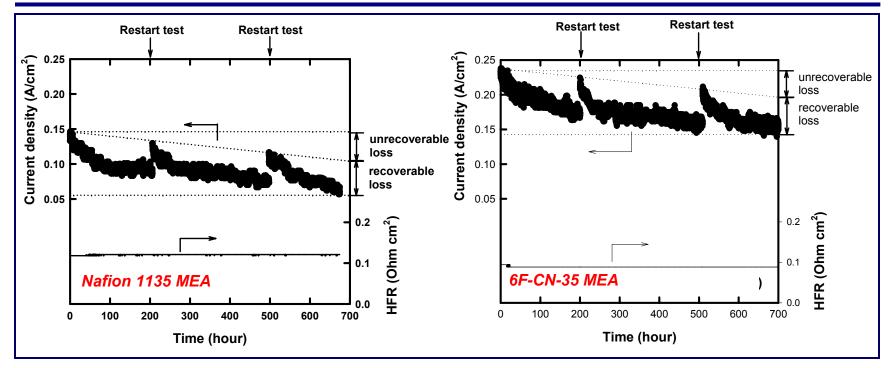


Hydrogen, Fuel Cells & Infrastructure Technologies Annual Review, May 24-27, 2004

Membrane / MEA Research

Membrane vs. MEA Selectivity

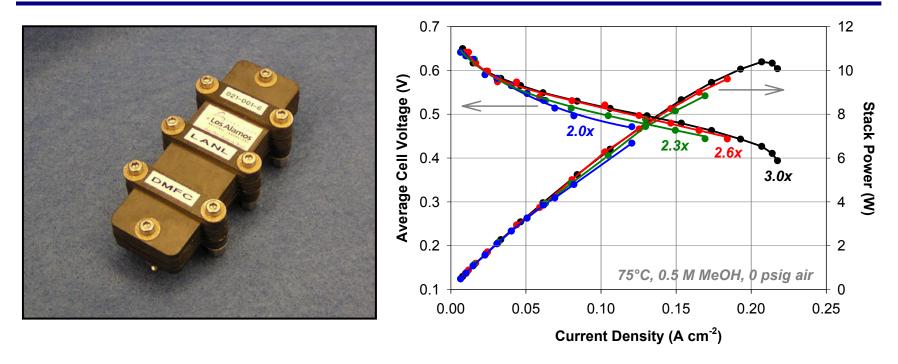
• Expected selectivity gains of BPSH-40 not realized in fuel cell testing.


• 6F-CN-35 MEA exhibits much higher selectivity than regular Nafion MEA.

Hydrogen, Fuel Cells & Infrastructure Technologies Annual Review, May 24-27, 2004

Membrane / MEA Research

Performance Durability (80°C, 0.5 V)



- Good and stable membrane/electrode interface indicated by no change in the resistance of 6F-CN-35 MEA over time.
- Similar 700-hour performance losses for 6F-CN-35 and Nafion MEAs
- Much higher initial performance of 6F-CN-35 maintained throughout the life test → <u>significant achievement</u> in the alternative DMFC membrane research.

High Specific-Power Stack for Portable Applications

Short Six-Cell Stack Testing

First test of high specific-power stack: (i) uniform operation of individual cells, (ii) very little sensitivity to the air flow, (iii) anode-limited performance.

Growing industrial interest; significant technology transfer potential

High specific-power stack project currently supported by Los Alamos National Laboratory's Technology Maturation Fund

Hydrogen, Fuel Cells & Infrastructure Technologies Annual Review, May 24-27, 2004

High Specific-Power Stack for Portable Applications

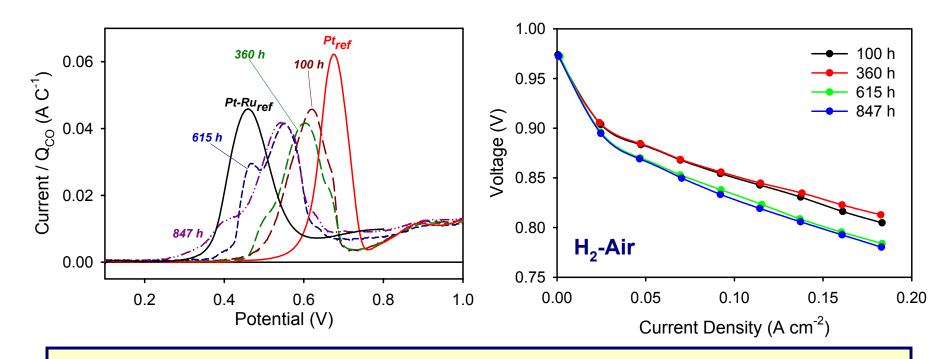
Stack Performance vs. DOE Technical Targets


- Expected maximum specific power of the 25-cell stack: 400 500 W/kg.
- Stack performance promises to exceed DOE's Technical Targets for Consumer Electronics systems for both 2006 & 2010

Table 3.4.7. Technical Targets: Consumer Electronics (sub-Watt to 50-Watt) ^a Calendar year					
Characteristics	Units	2003 status	2006	2010	
Specific Power	W/kg	unavailable	30	100	
Power Density	W/L		30	100	
Energy Density	W-h/L		500	1,000	
Cost	\$/W		5	3	
Lifetime	hours		1,000	5,000	
*Few sub-watt to 50-watt fuel cell systems exist and it is premature to specify current status.					

Durability Research

850-Hour DMFC Life Test: Possible Causes of Cell Performance Loss



- Surface area loss of the cathode and/or anode catalyst
- Cathode surface oxidation
- Diminished cathode hydrophobicity → "flooding"
- *Ruthenium crossover and subsequent accumulation at the cathode*

Hydrogen, Fuel Cells & Infrastructure Technologies Annual Review, May 24-27, 2004

Durability Research Ruthenium Crossover: Effect on Oxygen Reduction

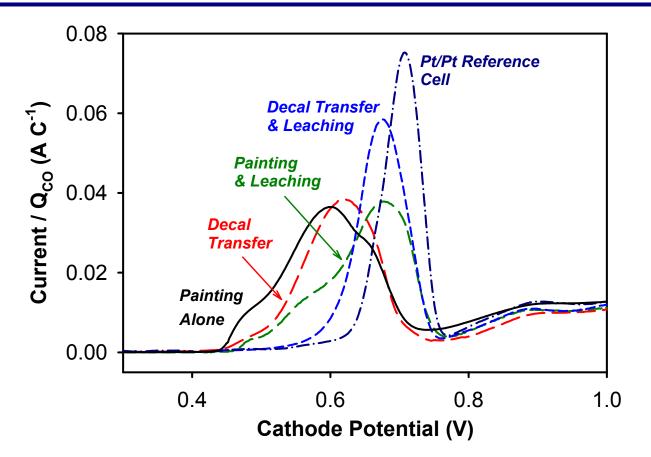


- Cathodes in 'typical" DMFCs (Pt-Ru black anode, Nafion™ membrane, Pt black cathode) become gradually contaminated by Ru migrating from the anode.
- CO stripping data at different stages of the life test correlate well with the cathode's kinetic performance.
- Oxygen reduction <u>alone</u> is inhibited by Ru crossover by ~25 mV at 0.1 A cm⁻² after several hundred hours of cell operation.

Durability Research

Ruthenium Crossover: DMFC Performance Loss

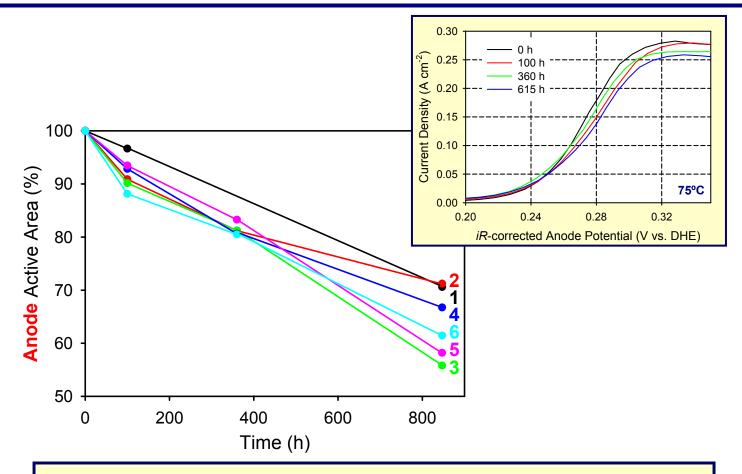
- Overall DMFC performance penalty resulting from slower oxygen reduction and lower cathode tolerance to crossover methanol: ~40 mV (moderate Ru contamination of the cathode after hundreds of hours of DMFC operation).
- <u>Extreme</u> Ru-contamination: ~ 200 mV cell voltage loss.


2004 Milestone Accomplished

Hydrogen, Fuel Cells & Infrastructure Technologies Annual Review, May 24-27, 2004

Durability Research

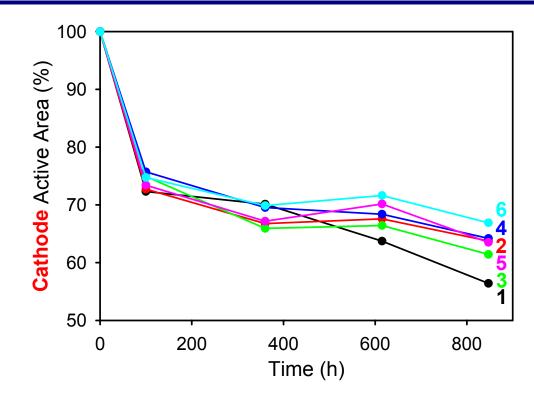
Ruthenium Crossover: Preparation of MEAs with "Ru-free" Cathodes



• Virtually Ru-free cathodes observed following removal of loosely-bound Ru in the anode catalyst & better anode curing (after break-in data; no life-tests performed).

Hydrogen, Fuel Cells & Infrastructure Technologies Annual Review, May 24-27, 2004

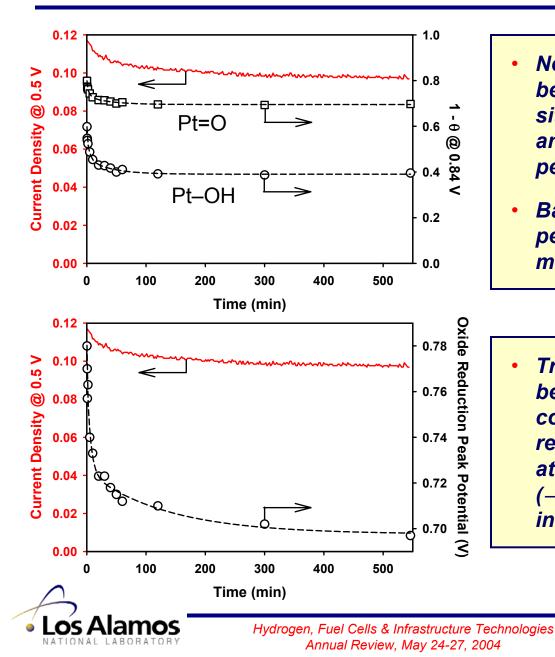
Durability Research Loss of Anode Active Surface Area



- 35% 40% anode surface area loss revealed by CO stripping after 850 hours of cells operation.
- Very little impact on DMFC performance.

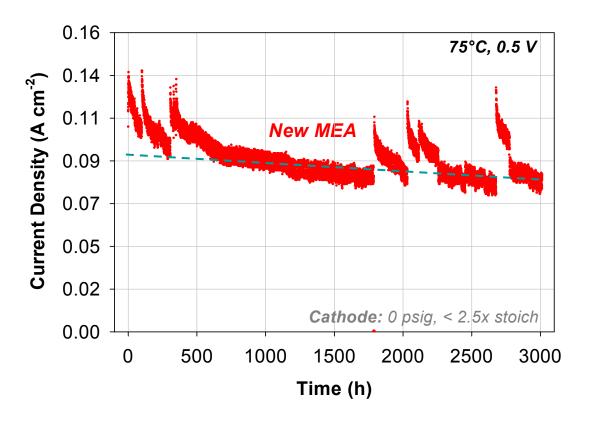
Hydrogen, Fuel Cells & Infrastructure Technologies Annual Review, May 24-27, 2004

Durability Research Loss of Cathode Active Surface Area


- **35% 40%** cathode surface area loss revealed by CO stripping after 850 hours of cells operation (similar loss as for the anodes).
- Possible significant impact on cell performance.

2004 Milestone Accomplished & Exceeded

Hydrogen, Fuel Cells & Infrastructure Technologies Annual Review, May 24-27, 2004


Durability Research Cathode Oxidation vs. DMFC Performance Loss

- No obvious correlation observed between <u>the rates</u> of catalytic sites blockage by surface 'OH' and/or 'O' species and DMFC performance loss.
- Based on percent loss of cell performance over time, 'O' is the more likely surface species.

 Transition of the cathode oxide beyond the point of surface coverage saturation is a likely reason for cell performance drop at times longer than two hours (→ lessened Pt catalyst activity in oxygen reduction reaction).

Durability Research Novel DMFC MEA with Improved Stability

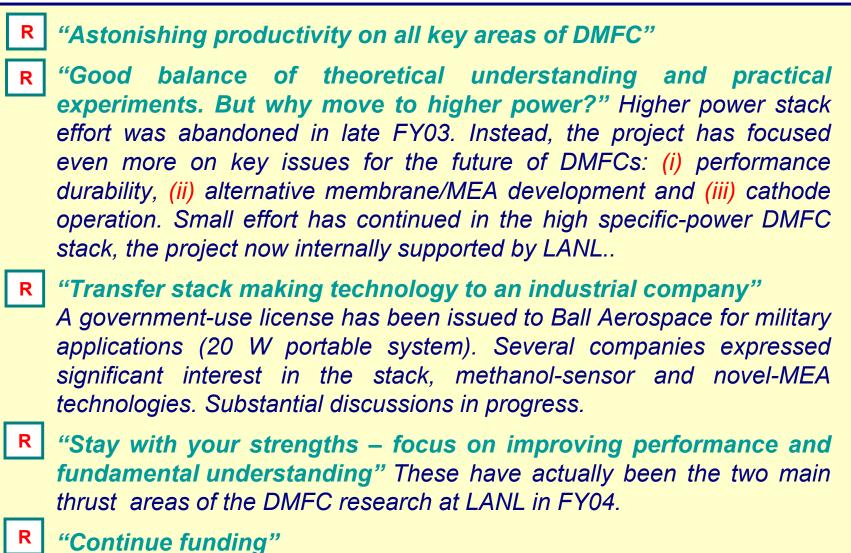
- New LANL-developed Nafion-based MEA tested for 3000 hours under challenging conditions of low air "stoich" and ambient cathode pressure.
- 3000-hour performance loss limited to ~12% (with fully oxidized cathode).

Performance Durability:

- Determined impact of Ru crossover on DMFC cathode performance (Milestone #1); proposed two methods for Ru crossover reduction
- ✓ Quantified anode & cathode surface area losses in the 850-hour life test (Milestone #3)
- Correlated transformation of Pt oxide and cathode performance loss
- Demonstrated new Nafion-based MEA with performance loss reduced to ~12% over 3000 hours

Membrane & MEA Research:

- Demonstrated much higher than Nafion's selectivity of 6F-CN-35 membrane in operating cell
- ✓ Maintained superior performance of the 6F-CN-35 MEA for 700 hours


Cathode Electrocatalysis:

 Synthesized in-house Pt and Pt-Co catalysts (unsupported and supported) with significantly reduced average particle size – Milestone #2's 40% particle-size reduction goal achieved; work will focus on performance

High Specific-Power Portable Stack:

Designed, built and successfully tested first short six-cell stack

Remainder of FY 2004

- Determine and optimize performance of new LANL-synthesized highly-dispersed cathode catalysts
- Verify performance stability of novel Nafion-based MEAs, recently life-tested for 3000 hours
- Demonstrate a complete 25-cell high specific-power stack for portable applications

FY 2005 Objectives (All key to successful commercialization of DMFCs)

- Determine impact of changing hydrophilic/hydrophobic properties of the cathode on DMFC performance and performance durability
- Explore introduction of non-precious metal electrocatalysts as means of lowering DMFC cost
- Minimize or altogether eliminate Ru crossover in DMFCs
- Establish materials and techniques allowing consistent fabrication of highly selective and durable alternative MEAs for DMFCs

Administrative Safety Controls

- ✓ Hazard Control Plan (HCP): Hazard-based safety review
- Integrated Work Document (IWD): Task-based safety review
- ✓ Integrated Safety Management (ISM): Define work → Analyze Hazards
 → Develop controls → Perform work → Ensure performance

Engineering Controls

- Hydrogen and carbon monoxide laboratory sensors for hydrogen testing (cell break-in, anode polarization testing, surface area determination)
- In the process of replacing tube hydrogen gas storage with ondemand electrolytic hydrogen generators
- Generally low and very low risk operations

Potentially Useful DMFC Safety Tip

 Direct sink disposal of low-concentration aqueous methanol waste is acceptable after dissolved CO₂ is removed by neutral gas purging and, consequently, initially acidic solution pH increases to neutral.

