

High Temperature Polymer Membranes for Fuel Cells

Thomas A. Zawodzinski Jr.

Case Advanced Power Institute, Dept. of Chemical Engineering Case Western Reserve University, Cleveland, OH

DOE Technical Barriers for Components

- O. Stack Material and Manufacturing Cost
- P. Durability
- Q. Electrode Performance
- R. Thermal and Water Management

DOE Technical Target for Fuel Cell Stack System for 2010 Cost \$35/kW Durability 5000 hours

"This presentation does not contain any proprietary or confidential information."

Hydrogen Safety Measures

Existing facilities

Thorough analysis undertaken with facilities personnel to ascertain expected flow rates of H₂ in various test operations Hydrogen primarily used in test stands Hydrogen supply will be placed outside building Appropriate automated emergency shutdown protocol to ensure no large leaks

New Facilities

Additional test stands require enclosure Consulting with industry ---> new design for enclosure

Cast of Characters: Research Group and Others

Z-group at Case

Students: Berry Chou, Tom Kalapos, Ram Subbaraman, Derek Lebzelter, Tom Greszler, Mike Bluemle, Felicia Costello, Brian Kienitz, Mike Pelsozy, Jessy Kurasch

Staff: Hayley Every, Chock Karuppaiah, Vlad Gurau, Hossein Ghassemi

Jim McGrath (Va. Tech)

Role of This Research Group

Lead Lab in High T Membrane Development Efforts

Internal focus: develop new membranes and MEAs for high T applications

External focus: coordinate activities of high T team, provide central resource/facilities to primarily synthesis-oriented team members, lead HTMWG

Project Elements

Technical

New Membrane Development Electrodes for High T MEAs from new Polymer Types

<u>Programmatic</u> High T Program High T Working Group

Development of New Membranes: Rationale and Targets

Development of systems for both:

- 120°C: minimally hydrated polymers (Primary Focus)
 - Achieve H+ conductivity approaching that of wellhydrated PFSAs at 80°C
 - Focus on new polymers and other scaffolds carrying sulfonic acids or other superacids
 - 25% RH at operating temperature suggested by GM, based on system requirements

Need improved durability

- >150°C: need to replace water with 'proton mobility facilitator' (Secondary Focus)
 - Focus on different conduction modes, non-volatile molecules to effect proton transfer
 - Durability of any polymeric components also a must

Development of New Membranes: Approach

Rational development strategy

- Combine diagnosis and physical chemistry studies with synthetic effort
- Understand functional role of 'significant structures' operating at various length scales
- Synthesis motivated by building block approach to improve or develop functions
- Synthesis sometimes carried out 'just' for insight
- Develop new analytical tools, deploy old tools to maximize insight gained
- Iterate

Proton Conduction in PEMs: A Qualitative Picture

Steps in the Process

Dissociate

• SO3⁻ • H3O⁺

 \bigcirc H₂O

Escape and 'Bridge the Gap'

 $\lambda \sim 4-14: \begin{array}{c|c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & &$

Plasticize/Network Forming

λ>14:

What Materials Are We Focused on? Why?

Provide driving force for proton dissociation, carrier for transport and well-connected network

Multicomponent Systems with Controlled NanoArchitecture

Composites Blends Networks Molecular,Oligomeric Additives

What We Must Build In Molecular level interactions Tuned electronic structure Connected over long range

The Building Blocks

Polymer System---structural, functional base material

- High proton density
- Strong intrinsic proton acidity
- Phase separation: organizes acids, stabilizes structure

 Proton acceptor---water is the best but for low RH must augment to achieve transport out of local vicinity of acid group

- Inorganic: heteropolyacids
- Organic: molecules, oligomers, polymers

Network of Acid-modified Silica Particles

Building Silica/Polymer composite membrane

Conductivity of silica/polymer composite membranes

Binder : PVDF (Insulator)

Binder : BPSH (with intrinsic protons) $\boldsymbol{\sigma}$

 $\sigma = 8.5 \times 10^{-2} \,\Omega^{-1} \text{cm}^{-1}$

Conduction in Networks: Ratio of conductivity / proton density

		Membrane		Conductivity/[Proton] (g/Ω.cm.mol)
		Nafion 117		94.56
		BPSH 35		70.83
PVDF ←		SiO ₂ /PVDF (34:66)	5-15 μm	30.97
		SiO ₂ /PVDF (44:56)	5-15 μm	25.33
		SiO ₂ /PVDF (53:47)	5-15 μm	27.39
		SiO ₂ /PVDF (29:71)	40-60 μm	6.77
		SiO ₂ /PVDF (41:59)	40-60 μm	9.09
		SiO ₂ /PVDF (46:54)	40-60 μm	11.94
		SiO ₂ /PVDF (36:64)	60-200 μm	10.67
		SiO ₂ /PVDF (42:58)	60-200 μm	10.00
		SiO ₂ /PVDF (49:51)	60-200 μm	18.33
BPSH -		SiO2/BPSH (34:66)	5-15 μm	6.15
		SiO2/BPSH (49:51)	5-15 μm	4.11
		SiO2/BPSH (60:40)	5-15 μm	4.65
		SiO2/BPSH (30:70)	40-60 μm	5.09
		SiO2/BPSH (44:56)	40-60 μm	5.66
		SiO2/BPSH (55:45)	40-60 μm	5.37
		SiO2/BPSH (27:73)	60-200 μm	4.00
		SiO2/BPSH (49:51)	60-200 μm	4.57
		SiO2/BPSH (59:41)	60-200 μm	5.00

Data suggests that we are not getting full conductivity effect per proton; WHY NOT?

<u>Next steps</u> Sort out limiting factors Smaller particles Increased acidity Increased acid loading

Multiblock Copolymers

- Multiblock copolymers are fascinating materials exhibiting various phase behaviors.
- They can self-assemble into multiphase domain structures on a nm scale due to the repulsive energetic interaction between the incompatible blocks.
- This unique self-assembling property offers the potential to achieve 1-, 2-, or 3-D confinement of functional materials, such as conducting materials.

Schemes for different multiblock copolymer morphologies : spheres (S), columns (C), lamellae (L), perforated layers (PL), gyroid (G).

Rod-coil

Coil-coil

Mixed Hydrophilic and Hydrophobic Block Copolymers as H+ Conductors

Next Steps: Designed Materials!! •Huge array of possible polymers, acid groups, morphologies •Introduce compatibilizers •Tailor acid group orientation

•Introduce small molecule additives

Several compositions prepared to date

Organized structures yield higher conductivity at low RH ($\sigma \sim 10^{-1}$ S/cm)

**NB: In this talk, <u>Next Steps</u> refers to future plans.

Ongoing Work/Next Steps: Higher Acidity Functional Groups

(1) Perfluorosultone
 chemistry--attached to
 many different starting
 materials.

(2) Stability of bis (sulfonimides) on aromatics

(3) Other groups structured to 'trap' water

Ongoing Work/Next Steps: Templated mesoporous membranes

Create interfacial structure to promote dissociation and transport of protons
Fluorocarbon sulfonic acid surfactants--strong acids
Makes maximum use of limited available water

~50 nm

Use Block Co-polymer and/or polymer solution processing approaches to make this structure without silica Introduce additional layers (monolayers?) of conducting phases to tailor acid/inorganic interface

Characterization Methods: Focusing on Critical Information

•NMR Methods explicitly designed to separate transport influences occurring at different length scales

- 'Restricted Diffusion'
- Comparison of Relaxation, Diffusion

•Spectroscopic Probes of water interaction with polymers, other components, each other

 Thermal Analysis to study strength of interaction between water and components and model compounds

NMR Probes of Interactions and Transport over Various Length Scales

NMR Relaxation: Measure of Mobility at Nanometer scale

 Water in Aromatic Sulfonate dramatically slower motion than Nafion--tighter binding

NMR Diffusion: Micron-Scale Mobility; 'Restrictions' to Translation

BPSH sample shows effect of 'grain-boundary' at ~ 2um

NMR Relaxation-Diffusion Comparison

- Reveals the relative importance of local scale interactions vs long-range structure effects in controlling transport
- Results: Much slower transport in $Ar-SO_3H$ than in PFSAs

Thermal Analysis: How Tightly is water bound?

Results of NMR, DSC experiments clearly illustrate:

Weaker acid groups hold water more tenaciously, lowering overall transport rates
Strong influence of controlled morphology for multiblocks; easier to hydrate

Progress This Year and Status: Membrane Development

Fully implemented rational development strategy

Required synthetic and characterization tools in place
 Synthesis or Preparation of multiple new material sets

- Focused on development of 'controlled nano-architectures'
- ~15 new materials synthesized (not all reported on here)

Themes

- Importance of phase segregation
- Key factors in improving percolating network structures
- Stability of new material classes

Computational Studies of Substituent Effects on Imidazole Proton Affinity

Increasing basicity, increasing proton affinity

Effect of Imidazole on Pt voltammetry in Acid

Imidazole added to $0.5M H_2SO_4$ At low imidazole contents, a slight loss in Pt activity (imidazole all protonated)

High imidazole concentrations affect activity significantly (imidazole free base present)

E(V) vs SHE

Effect of 2-Me-Imidazole on Pt voltammetry in Acid

2-methyl Imidazole added to 0.5M HClO $_4$

At low 2MeIm contents, less loss in Pt activity cf Imidazole

Substantial loss in activity at high concentrations

Progress This Year: High Temperature Proton Conductors

Limited activity

Secondary focus

Studying Properties of Alternative Proton Acceptors

- Tuning electronic structure of imidazole
- Emphasized IP as determining factor

Imidazole in Electrodes

- Electrochemical studies show that impact of imidazole in acid less than that in base
- Protonation induces ring puckering, interferes with Im adsoprtion on Pt

Electrode Studies: Approach and Objective

Study the ORR at High Temperature, low RH conditions in an operating Fuel Cell

- Aid in identifying the critical material parameters by studying their impact on ORR
- Will provide a point of comparison engineering of new electrode materials for use in High Temperature Electrodes

Factors to be decoupled

Resistive and gas phase mass transport losses at high temperature and low RH

Once the resistive and mass transport corrections are done, the kinetics is affected by:

Available/Accessible Area Proton conductivity Oxygen Permeability and Gas Phase mass transport ORR Kinetics devoid of the above limitations (involves the electron and proton transfer step)

Experimental Observations at Different Sub-saturation Conditions

Impact of FC Performance at low RH from 70 to 95 C at ambient pressure

Kinetic region

Marked decline in electrode kinetics with increasing sub-saturation
Drop in OCV with low RH condition

Electrode Kinetics: Tafel Plots

Local mass transport effect is observed. Need to decouple for kinetic analysis.

Change in OCV observed with sub saturation. Possibly due to change in hydrogen/oxygen permeation through the membrane

Electrodes: Next steps

- Hydrogen permeation test to understand the drop in OCV with low RH
- Operation at 120 C with 25% RH Follow the performance with continuous diagnostics
- Decoupling of RH effect and partial pressure effect carryout test with sufficient drying gradient at low operating temperature
- Study the performance as a function of the ionomer fraction in the catalyst layer
- Introduce new materials into catalyst layer to enhance performance

Progress This Year: Electrode and MEA Development

Electrodes: diagnostics and preliminary

- Diagnostics
 - Working with Pine Instruments to develop high T RRDE
- New Structures
 - Introduced modified carbons to improve CL conductivity and water retention
 - Preparing new carbon supports with different 'topology'

MEA Development

- Coating New Polymers
- Investigation of Compatibilizing Interlayers

The DOE High Temperature Membrane Program

Program Focus/Evolution

- This project primarily focuses on new concepts to deliver functionality with limited focus on <u>complete</u> 'development'
- Seed funding (2 years, 100 k\$) with continuous turn-over;
 Goal: get beyond the 'usual suspects' to engage best and brightest from polymer science community;
- FY04: 6 new projects funded; all new faces from polymer or materials community; seek to educate this community on needs and transport aspects of fuel cell membranes

Available Central Facilities/Capabilities at Case

- Electrolyte Characterization at High T
- MEA Preparation and Fuel Cell Testing
- Modest Scale-up
- Polymer Characterization

High Temperature Membrane Working Group

Roadmap, Technical Targets under continual revision

HTMWG bi-annual meetings

•Going International: meeting held in Paris; EU coordination expected

•Researcher exchange program proposed

Discussion on Characterization Methods

•Next meeting: Hawaii

•Website:

Future Work

- 1. Continue development of tailored nano-materials
 - a) Develop block co-polymer/inorganic composites
 - b) Network structures
 - c) New small molecule or oligomeric additives
 - d) High acidity functionality
 - e) Develop realistic stability test-->aromatic imides
- 2. More emphasis on MEAs, electrodes
 - a) Coating methods
 - b) Use modified C's to improve layer properties
 - c) GDLs to control water
- 3. High Temperature conductors
 - a) Begin to test alternative conductors in membranes
 - b) Hybridized materials?