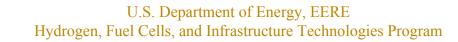


High-Temperature Polymer Membranes

Seong-Woo Choi, Suhas Niyogi, Romesh Kumar, and Deborah Myers Chemical Engineering Division

This presentation does not contain any proprietary or confidential information

Argonne National Laboratory


Office of Science U.S. Department of Energy A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Project Objectives

- To develop a proton-conducting membrane electrolyte for operation at 120-150°C and low humidities to meet DOE's technical targets
- Investigate use of dendritic macromolecules attached to polymer backbones, cross-linked dendrimers, and inorganicorganic hybrids
 - Measure thermal stabilities and conductivities of samples 11/03√
 - Prepare and characterize inorganic-organic hybrids
 02/04✓
 - Fabricate and test MEAs using high-temperature membranes

09/04

Budget

 Total Project Funding, FY'02-FY'04:

\$700 K

• FY'04 Funding:

\$250 K

3

Technical Barriers and Targets

- This project addresses DOE's Technical Barriers for Fuel Cell Components
 - E: Distributed Generation Durability
 - O: Stack Material and Manufacturing Cost
 - P: Component Durability
 - Q: Electrode Performance
 - R: Thermal and Water Management

DOE's Technical Targets:

- High, sustained proton conductivity (>0.1 S/cm) at 120°C and 25% RH (automotive)
- Low oxygen and hydrogen cross-over (2 mA/cm²)
- Low cost, <\$5/kW
- Durability of >5,000 hours
- Able to withstand temperatures as low as -40°C

Approach: Dendritic macromolecules and Organic/inorganic hybrids

Dendritic Macromolecules

- ✓ Highly branched spherical macromolecules
- ✓ High surface charge densities
 - May facilitate high proton transfer with reduced water mediation
 - May improve water retention at high temperatures

Inorganic/Organic Hybrids

- ✓ Variable charge density and distribution
- \checkmark High thermal and dimensional stabilities
- Inorganic component improves water retention at high temperatures

Safety

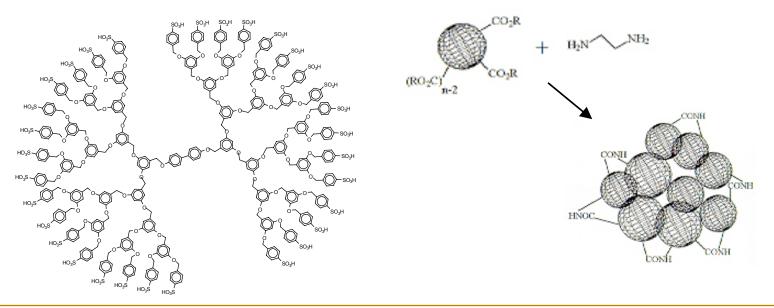
 Internal safety reviews have been performed for all aspects of this project to address ESH issues

- Membrane synthesis
 - All synthesis is performed in a hood to exhaust vapors of organic solvents (e.g., DMF)
 - Used organic solvents are collected and disposed of through the laboratory's Waste Management Operations
- Membrane testing
 - Thermal gravimetric analysis purge gas exhausted into hood
 - Conductivity apparatus "safe" hydrogen (<4% H₂ in He) is used as a purge gas

Safety reviews are updated and renewed annually

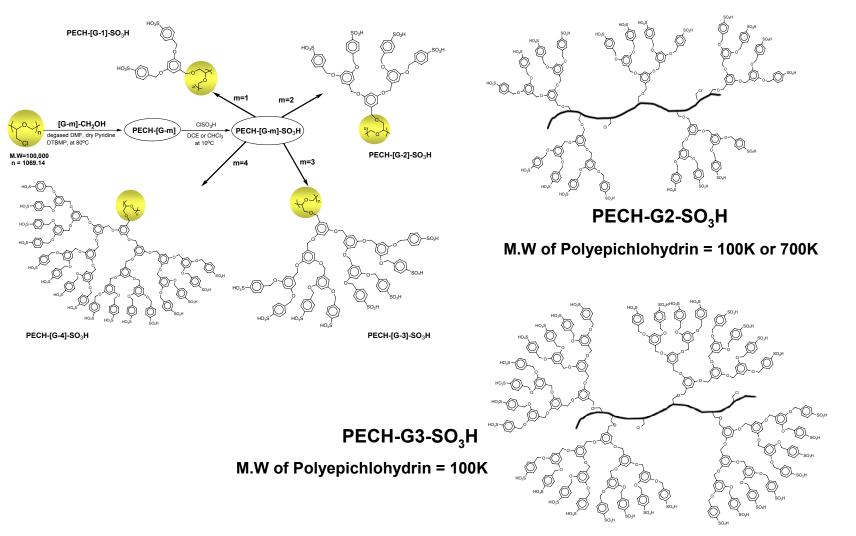
Project Timeline

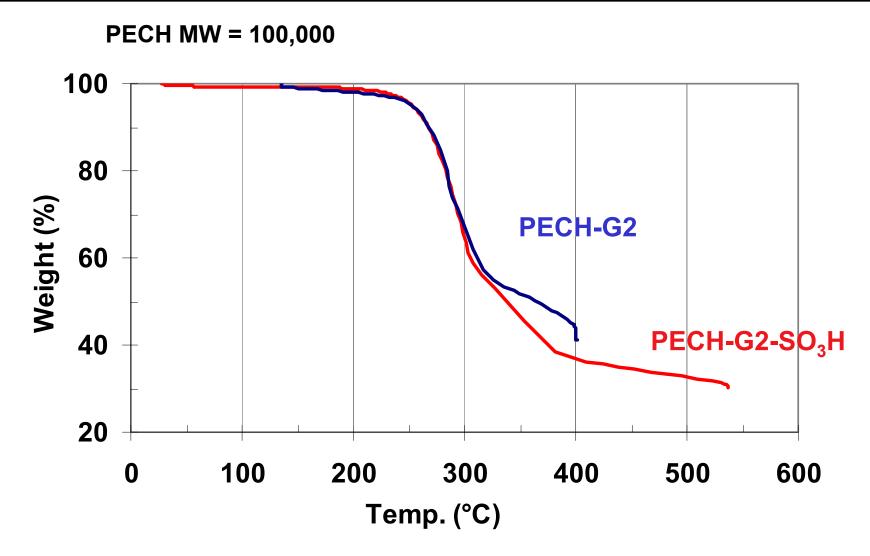
FY'02	FY'03	FY'04	FY'05
1 2 3	4 5 6	7 8 9	10 11 12


- 1, 2, 3: Evaluated 3 classes of dendrimers, established capability to measure ionic conductivity, down-selected to one class of dendrimer
- 4, 5, 6: Characterized and measured ionic conductivity of polyarylether hyperbranched membrane, prepared membranes from modified commercial systems (PEO), improved membrane properties
- 7, 8, 9: Measured thermal stabilities and proton conductivities of membranes, improved membrane-forming characteristics of materials, fabricate membrane-electrode assembly from most promising material
- 10, 11, 12: Down-select membrane materials, determine durability under fuel cell operating conditions, modify materials to improve performance

Dendritic macromolecular membranes

- Aryl ether dendrimers chosen due to high thermal stability
- High density of sulfonate groups imparts water solubility
 - cross-linking eliminates water solubility and controls swelling
 - identity of cross-linker determines pore size and film-forming characteristics
 - attaching dendrimer to polymer backbone is an alternative strategy to eliminate water solubility and allow film formation




Dendrimers have been attached to polyepichlorohydrin to form water-insoluble films

TGA shows PECH-G2-SO₃H polymer is stable up to 190°C

Dendronized polyepichlorohydrin has a high density of proton-conducting groups, but is water insoluble

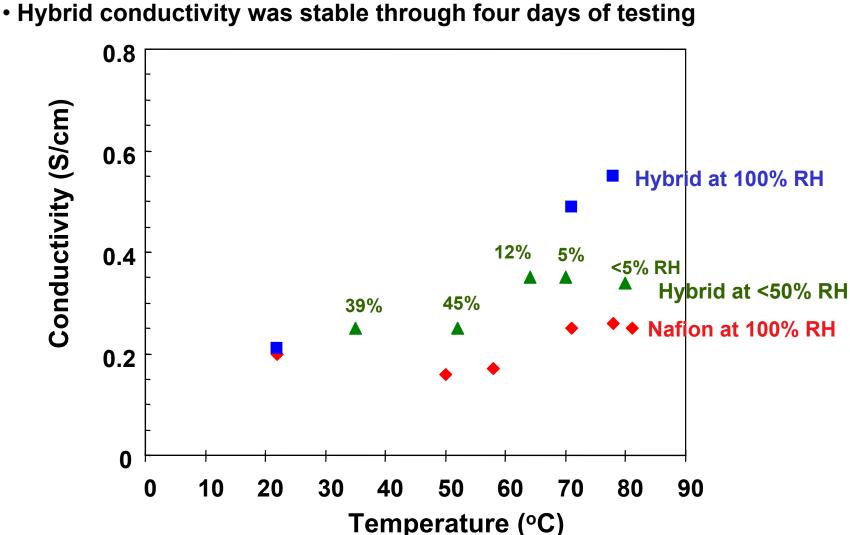
• Acid titration results:

- PECH-G2-SO₃H: 4.0 meq/g
- PECH-G3-SO₃H: 4.05 meq/g
- Nafion: 0.91 meq/g
- Initial conductivity results for PECH-G2/G3-SO₃H: (20% G2/80% G3)

Temperature (°C)	Relative Humidity (%)	Conductivity (S/cm)
21	100	0.031
56	100	0.081
73	59	0.036
98	22	0.022

- Initial conductivity results for PECH-G2-SO₃H (MW PECH = 700K):
 - 0.101 S/cm at 76°C and 6% relative humidity

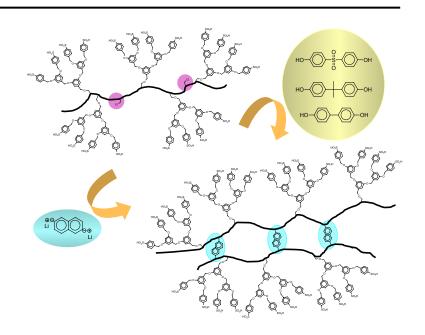
Inorganic-organic hybrid membranes

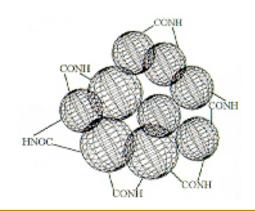

Cyclic organic component

- high thermal stability (>300°C)
- high density of sites for functionalization
- low cost
- Sulfonated organic component blended with colloidal silica in formaldehyde to form a gel
- Gel is freeze-dried to form an inorganic-organic hybrid material with an equivalent weight of ~600
- Initial film formed by blending with Nafion solution (Nafion 70 wt%, Organics 14 wt%, Silica 16 wt%)

Inorganic-organic hybrid has higher conductivity than Nafion in testing up to 80°C

Interactions and Collaborations


- Sub-contract with Case Western Reserve University to prepare all-aromatic dendrimers was completed 12/03
- Presentations at International Energy Agency workshops
- U.S. Patent Application 20030035991
- Establishing collaboration with Toyota Motor Corporation



Future Work

- Complete characterization of G2, G3, and G4 dendritic polymers with PECH (MW = 100K and 700K)
- Cross-link PECH-dendritic polymers to improve mechanical properties
- Cross-link dendrimers to form dendrimeric network
- Develop film-forming techniques for inorganic-organic hybrids that do not rely on Nafion
- Fabricate and test a MEAs using high-temperature membranes

Office of Science

U.S. Department

of Energ

U.S. Department of Energy, EERE Hydrogen, Fuel Cells, and Infrastructure Technologies Program 15

- Funding from the U.S. Department of Energy, Energy Efficiency, Renewable Energy: Hydrogen, Fuel Cells & Infrastructure Technologies Program is gratefully acknowledged
- Nancy Garland, DOE Technology Development Manager

