Polymer Blend Proton Exchange Membranes

R. A. Weiss and M. T. Shaw University of Connecticut May 25, 2004

This presentation does not contain any proprietary or confidential information.

Objective

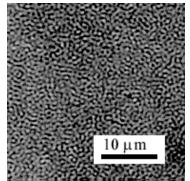
Develop new membranes based on polymer blends for operation at temperatures of 120°C or higher

DOE Funding FY04 = \$ 95,000

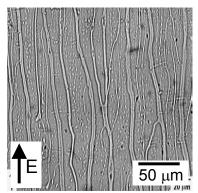
Technical Barriers and Targets

DOE Technical Barriers For Fuel Cell Components

- O. Stack Material and Manufacturing Costs
- P. Durability
- R. Thermal and Water


DOE TechnicalTargets for Membranes (Automotive) for 2005

- Membrane conductivity (operating temperature) ~ 0.1 S/cm
- Operating temperature $\geq 120^{\circ}C$
- Membrane cost ~ \$50/kW
- Membrane durability > 4000 h
- Hydrogen/oxygen cross-over (MEA) ~ 5 mA/cm²
- ♣ Survivability ~ -20 °C


Approach

Develop high temperature PEMs with controlled morphology using acid-base polymer blends

 Thermodynamics: develop a percolated ionic pathway at the interface of a spinodal morphology of a polymer blend comprising a sulfonated polyketone and a polyimide or similar second component

 Electro-dynamics: Orient a dispersed phase of the conductive sulfo-polyketone in a polyimide matrix by applying an electric field during membrane casting

Project Safety

Handling and disposing of SO₃: normal handling procedures for strong acids; disposal by neutralization

Handling of hydrogen: normal handling procedures of high-pressure gas; high-flowrate ventilation

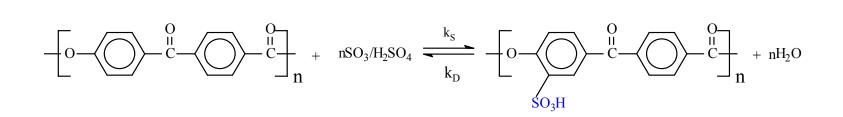
Handling and disposing of solvents: normal OSHA/EPA procedures used

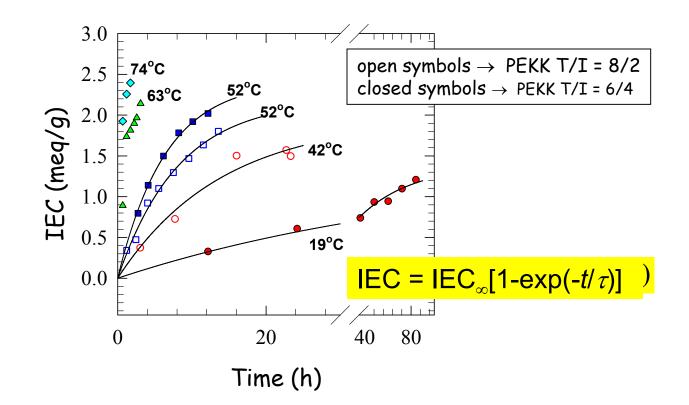
Project Timeline

10/02 - 10	10/03 - 10/04			10/04 - 12/06		
Phase I		Phase II			Phase III	
1	2	3	4	5	6	7

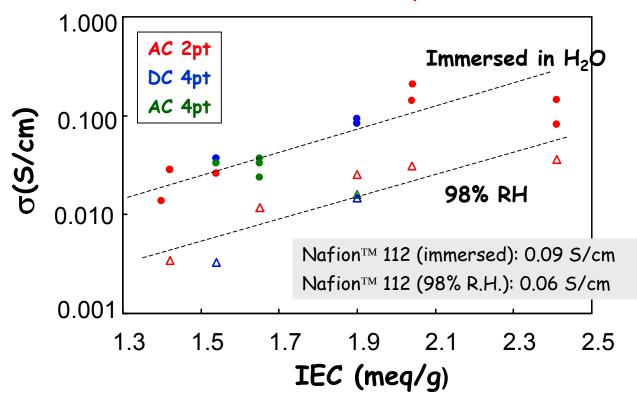
Phase I: Feasibility

- 1 Optimize preparation of sulfonated PEKK (SPEKK) ionomers
- 2 Prepare/Évaluate SPEKK/polyether imide (PEI) blend membranes
- Phase II: Morphology Development
 - 3 Develop spinodal structure for SPEKK/PEI membranes and characterize membrane performance
 - 4 Develop procedure for orienting SPEKK/PEI membranes and characterize membrane performance
 - 5 MEA production and testing
- Phase III: System Optimization
 - 6 Optimize membrane composition and morphology for high temperature SPEKK/PEI PEM
 - 7 Design and evaluate other blend PEMs


Technical Accomplishments/Progress


Developed Membranes Based on Poly(ether ketone ketone)

$$- \boxed{O - \swarrow - \overset{O}{\mathbb{C}} - \swarrow - \overset{O}{\mathbb{C}} - \swarrow - \overset{O}{\mathbb{C}} - \swarrow - \overset{O}{\mathbb{C}} - \overset{O}{$$


- High temperature stability ($T_g \sim 155^{\circ}C$; $T_m \sim 360^{\circ}C$)
- Excellent mechanical properties (engineering thermoplastic)
- Excellent chemical and solvent resistance
- Excellent oxidative stability
- Adequate resistance to desulfonation

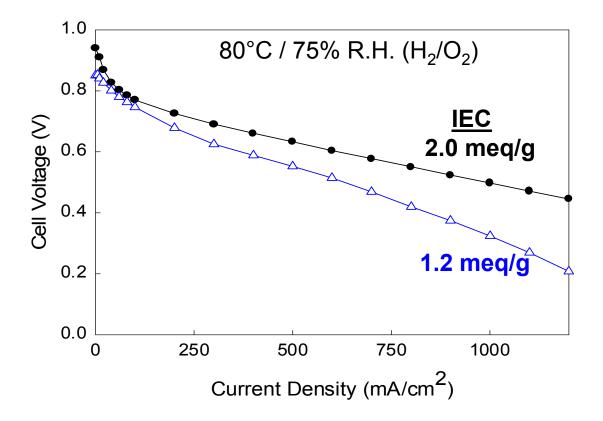
Optimized procedure for preparing sulfonated PEKK (SPEKK)

Proton Conductivity of SPEKK

SPEKKs:

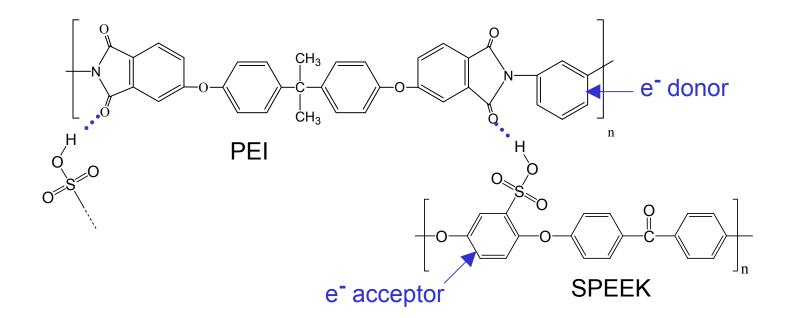
- For IEC ~ 1.8 2.1 meq/g, conductivity ~ 10⁻¹ S/cm
- Water insoluble when IEC < 2.3 meq/g</p>
- \succ 20-150 μ m membranes can be cast from NMP or DMAc

Methanol Crossover for SPEKK in MEA

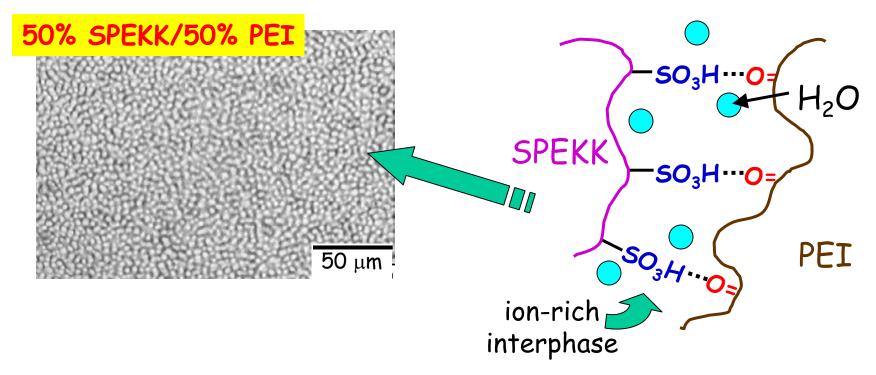

	Resistance (ohm cm²) (H ₂ /O ₂ , 80 °C)	Methanol Crossover (A/cm²) (1M MeOH, 80 °C)
SPEKK (1.8 meq/g)	0.07	0.22

 Nafion™
 0.05
 0.40

SPEKK membranes:

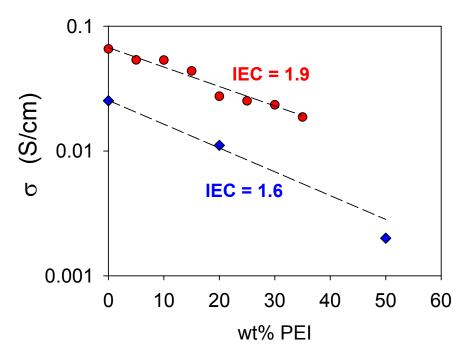

- Good proton conductivity (~ 0.1 S/cm)
- ➤ Improved methanol permeability resistance vs. Nafion[™]

MEA Performance of SPEKK PEMs


Reasonably good MEA performance

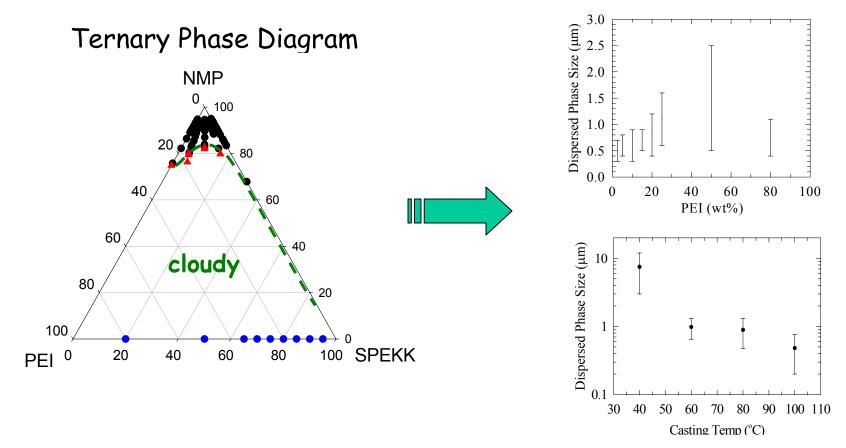
Blends of SPEKK with Poly(ether imide) (PEI)

- Strong H-bonding interactions are expected
- Solution States and States and
- Relatively hydrophobic PEI provides mechanical integrity

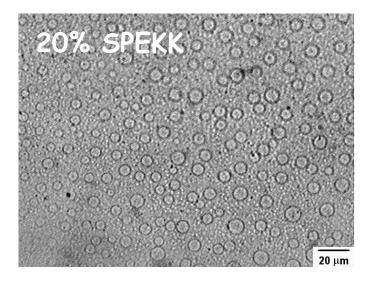

SPEKK/PEI Blend PEMs

Hypotheses:

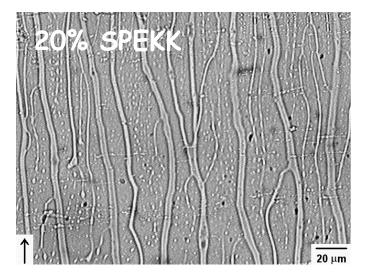
- > Ion-rich interphase provides pathway for proton conductivity
- Percolated conductive path present before water is added
- Amount of water required for conductivity will be less than for conventional ionomer membrane


Effect of PEI content on conductivity (RT)

Increasing PEI concentration:

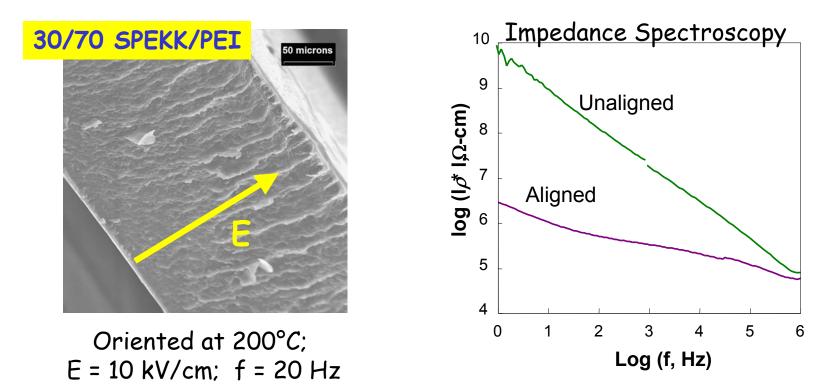

- Lowers conductivity (but still > 0.01 S/cm for c_{PEI} < 30%)</p>
- Reduces water concentration
- Improves mechanical properties of wet membrane

Controlling the Blend Morphology: Film Casting T



Dispersed phase size decreases with casting temperature
 Dispersed phase size increases with increasing PEI

Controlling the Blend Morphology: Electric Field Alignment


Cast without Electric Field

Cast with Electric Field E = 0.5 kV/cm; f = 20 Hz

SPEKK dispersed phase can be oriented by applying an AC electric field across the membrane during processing (solution or melt)

Controlling the Blend Morphology: Electric Field Alignment

Electric field alignment of SPEKK phase significantly increases the membrane conductivty

Interactions and Collaborations

Oxford Performance Materials (OPM): SPEKK development and blend membrane development; MEA fabrication and testing

Leveraging Resources:

Agency	Dates	Award	Outputs/Objectives
Connecticut Innovations, Inc. (UConn and OPM)	1999-01	\$375K	Development of sulfonated PEKK. Initial evaluation of sulfonated PEKK for PEM fuel cell applications.
Connecticut Innovations, Inc. (UConn and OPM)	2001-03	\$375K	Development of reproducible process for sulfonation of PEKK. Demonstrated feasibility of SPEKK PEMs for direct methanol fuel cells.
DOE Inventions & Innovations (OPM)	2003-05	\$250K	Ongoing: sPEKK and sPEKK blend based MEAs. (subcontract to UConn)
DOE (UConn)	2003-05	\$191K	Ongoing: Development of methods for controlling domain structure of polymer blends for PEM applications using thermodynamics and electric fields
Connecticut Global Fuel Cell Center (UConn)	2003-04	\$75K	Development of equipment for electric field orientation of polymer films during film preparation
NSF (UConn)	1994-02	\$1.1M	Fundamental studies of the thermodynamics of ionomer blends

Future Plans

Remainder of FY 2004:

- Develop ternary phase diagrams for SPEKK/PEI/solvent, using different solvents
- Produce membranes with spinodal structure
- Optimize equipment and procedures for electric field orientation of membranes
- Fabricate MEAs with controlled morphology blend membranes