Microchannel Reformate Cleanup: Water Gas Shift and Preferential Oxidation

2004 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Review

W.E. TeGrotenhuis Pacific Northwest National Laboratory May 23, 2004

Team: K.P. Brooks, J.M. Davis, C.M. Fischer, D.L. King, L.R. Pederson, V.S. Stenkamp, R.S. Wegeng, G.A. Whyatt

This presentation does not contain any proprietary or confidential information.

Rattelle

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Objectives

Overall Objectives

- Apply microchannel architectures where appropriate in fuel processing for transportation, stationary, and portable applications to reduce size and weight, improve fuel efficiency, and enhance operation.
- Develop a prototype microchannel-steam-reforming fuel processor at 2 kWe scale that will meet DOE performance targets when scaled up to 50 kWe.

Performance	2004 Projected	2004 Demo
Criteria	Performance	Target
Cold (20C) Start Time	12 sec, reformer only	<60 s to 90%
Start up Energy	<7 Mj (a)	2 MJ
Power Density	2307 W/L (a)	700 W/L
Efficiency	78%	78%
Durability	>1000 hr	2000 hr

(a) based on individual components only, excludes tube, duct, insulation etc.

Task Objectives

- Demonstrate 90% CO conversion in a single-stage WGS reactor that scales to less than 3 liters at full-scale
- Determine whether microchannel architecture provides opportunities for size and weight reduction for PROX reactor

Budget

- Continuing Project, \$119K of Carryover Funding
- ► FY04 Funding Level \$700K, allocated:
 - \$300K for WGS development (this poster)
 - \$400K funding for reforming activities (presentation)

Technical Barriers and Targets

Fuel-Flexible Fuel Processor Technical Barriers Addressed

- L. Hydrogen Purification/Carbon Monoxide Clean-up
- M. Fuel Processor System Integration and Efficiency

Key DOE Technical Targets Addressed:

- CO Content in Product Stream
 - (< 10 ppm steady-state, < 100 ppm transient)
- Power Density
 - (> 800 W/L)
- Specific Power
 - (> 800 W/kg)

Approach

Compact size and weight to meet packaging requirements

rapid heat and mass transfer for high hardware productivity

Thermal management

- high heat transfer effectiveness in heat exchangers and reactors for maximum heat utilization and high fuel efficiency
- Water management
 - compact and efficient air-cooled partial condensers
- Rapid start-up
 - imbedded heat transfer in reactors facilitates rapid heating
- Cost
 - improved productivity of precious metal catalysts

Project Safety

Training of staff on laboratory-specific hazards is assured by limiting access to the lab through IOPS (Integrated Operation System)

Standard operating procedures for all experimental systems

- Reviewed and approved by ES&H representatives, a cognizant space manager for the lab space, and a building manager prior to work beginning.
- Identifies hazards, required personal protective equipment, and operational constraints.

The microchannel architecture, due to low internal volume, minimizes inventories of flammable gas.

CO Cleanup / Balance of Plant Project Timeline

FY 2000 Invented phase separator

FY2001 Demonstrated partial condenser with phase separator

FY 2002 WGS/Prox catalyst studies WGS reactor concept Initial SR/WGS/Prox integration Air-cooled condenser

FY 2003 2 kWe PROX reactor

Differential Temperature Water Gas Shift Reactor Approach

Objective:

- 90% Conversion single-stage WGS reactor < 3 liters at full-scale
- Approach:
 - Precious metal catalyst for high activity
 - Integrate microchannel heat exchange for temperature control
 - Optimize thermal profile
 - Reduce catalyst loading by up to 1/2

Relevance

- Smaller size higher power density and specific power
- Reduced cost
 - Improved catalyst efficiency
 - 3 devices collapsed into 1
- Potential for higher energy efficiency

Conventional 2-stage Adiabatic

Ideal profile

Differential Temperature Water-Gas Shift New Reactor Concept

Water-Gas Shift Extended Testing of Engineered PM Catalyst

WGS Differential Temp Reactor Extended Area for Mass Transfer

Problem

- WGS mildly exothermic
- Interleaved approach gives too much heat transfer area
- Reaction quenched prematurely

Solution

- Utilize concept of extended area in reaction channels
- Result
 - Heat exchange will support required heat flux
 - 52% of reactor volume is catalyst
 - ΔT in fins < 0.1°C

Water-Gas Shift 2 kWe Reactor

Water-Gas Shift Differential Temperature Reactor Comparison to Conventional 2-Stage Adiabatic

Assumptions

- 350 g/L catalyst loading onto a 600 cpi monolith
- Same catalyst activity as used in differential temperature design
- Negligible mass transfer resistance
- Total volume 25% greater than catalyst volume
- 5 W/cm³ heat transfer power density in heat exchanger
- Steam reformate with 3:1 original steam to carbon ratio

50 kWe scale

- Differential temperature reactor volume 4.1 Liters
- Conventional 2-stage adiabatic 9.9 Liters (2.2X larger)
 - High temperature stage 0.8 Liter
 - Heat exchanger 1.25 Liters
 - Low temperature stage 7.8 Liters
 - Does not include piping between devices

Water-Gas Shift Differential Temperature Reactor Manufacturability

- Methods for loading catalyst powder in situ are being developed under other programs
- Extrusion of microchannel arrays has been demonstrated

Additional investments in low cost manufacturing techniques are required for adoption of the technology

Differential-Temperature WGS Summary

Hybrid approach adopted to optimize size and weight

- Adiabatic front end
- Differential temperature back end
- One single integrated device
- Novel reactor concept gives high volumetric productivity
- Prototype 2 kWe reactor in development
 - Benchmark size and weight
 - To be integrated into a fuel processing system
- ► Full-scale 50 kWe WGS reactor projections:
 - Scaled from 2 kWe reactor design
 - 4.1 Liters (12,000 We/L)
 - 9 kg weight (5,600 We/kg)
 - 1.2 MJ to heat from ambient to operating temperature
 - Additional size reductions with increased catalyst activity

Microchannel PROX Reactor Investigations

- Objective: Determine whether microchannel architecture provides opportunities for size and weight reduction for PROX reactor.
- Approach:
 - Single-channel, isothermal catalyst tests
 - Evaluate industrial PROX catalysts
 - Characterize kinetics
 - Identify temperature and oxygen sensitivities
 - Design and test a 2 kWe PROX reactor
 - Demonstrate PROX functionality
 - Confirm favorable operational characteristics
 - Establish design basis for future prototype reactors
 - Investigate weight reduction by using low-density alloys (e.g., aluminum and titanium)
 - Design and build a prototype reactor optimized for size and weight
 - Investigate transient and startup characteristics

Progress:

- 1st Stage PROX microchannel reactor demonstrated at 2 kWe scale exhibits high productivity due to internal microchannel heat exchangers providing temperature control
- Combined 1st and 2nd stage PROX reactor achieves 1% to 10 ppm CO reduction at a 2 kWe scale

Microchannel PROX Reactor

Objectives of PROX Testing

- Support fast kinetics
- Minimize H₂ Oxidation
- Maximize CO Conversion
- Approach Taken
 - Control temperature
 - Alternating catalyst pieces and microchannel heat exchangers
 - Conduction to remove heat from catalyst
 - Inject air within each chamber of the reactor
 - Adjust amount and type of catalyst in each chamber
- Reactor Design
 - Designed for 1st Stage PROX at 2 kWe throughput
 - Includes 4 Chambers with air bleed-in and sample measurement at each chamber

Results with 1st and 2nd Stage PROX

First Stage (1% CO)

- Sud Chemie NPM Catalyst Results
- Air addition after each stage results in high conversions up to 4 kWe with 1 and 2% CO Feed

 140-160°C 2nd Stage Catalyst operates at the same temperature as NPM 1st Stage Catalyst

Combined 1st and 2nd Stage PROX in Microchannel Reactor

Results

- Combined Sud Chemie NPM Catalyst and Engelhard PM Catalyst
- Added higher ratios of O₂/CO in later chambers to increase conversion
- Decreased CO from 1% to < 10 ppm at 2 kWe throughput with an overall O₂/CO ratio of 1.2 and a combined GHSV of 93,000

PROX Summary

Future PROX work:

- Evaluate aluminum and titanium alloys for microchannel PROX reactor
 - Potential weight reduction
- Design a next generation 2 kWe reactor
 - Optimize size and weight
 - Facilitate heat integration within fuel processing system
 - Designed for rapid start and transient operation
- Test as part of integrated fuel processor with steam reformer, watergas-shift and heat exchangers
- Couple to a PEM fuel cell
- No current scope for continuing microchannel PROX reactor development

Interactions

Catalyst Development

- Sud-Chemie, Inc. WGS, PROX
- Engelhard PROX

Technology Spin-off

- R&D 100 award submitted for microchannel phase separator technologies.
- NASA PEM Fuel Cell Interests
 - Microchannel Partial Condenser / Phase Separator successfully tested in zero gravity onboard NASA's KC-135 aircraft.
 - Microchannel phase separator built for NASA at 5-kWe-scale; tested by NASA JSC and onboard NASA's KC-135 aircraft.

Responses to Comments

"This technology has good potential for this application, but the specific relevance needs better definition."

- A preliminary 'apples-to-apples' comparison of microchannel WGS to conventional adiabatic approach is provided.
- FY04 scope does not include continued PROX development.
- "Durability is still missing from list of technical targets." and "Need evidence or pathway for realization of 2,000 hr target."
 - Catalyst deactivation has been a challenge, particularly with thermal cycles and restarts, and is under investigation.
 - Efforts have been focused on concept demonstration. Other issues including durability and fast-start will be addressed in future work.

Future Work

- Complete testing of 2 kWe WGS reactor
- Integrate PROX and WGS reactors with steam reformer at 2 kWe scale
 - Demonstrate rapid start
 - Evaluate the startup time, energy, and CO content vs time for this system
- Resolve durability technical challenges
 - Identify source of WGS deactivation with shutdown/restart
 - Demonstrate 2000 hour durability