

Non-Precious Metal Electrocatalysts

Xiaoping Wang, Deborah Myers, and Romesh Kumar Chemical Engineering Division

This presentation does not contain any proprietary or confidential information

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Project objective

- Develop a non-precious metal cathode electrocatalyst for polymer electrolyte fuel cells
 - Promotes the direct four-electron transfer with high electrocatalytic activity (comparable to that of Pt)
 - O₂ reduction reaction (ORR) in acidic media (e.g, in PEFC)
 - Two-electron transfer

 $O_2 + 2H^+ + 2e^- = H_2O_2$

- Four-electron transfer

 $O_2 + 4H^+ + 4e^- = 2H_2O$

- Four-electron process is desirable due to its higher efficiency and non-corrosive product
- Chemically compatible with the acidic polymer electrolyte
- Low cost

Budget – New FY'04 Project

• FY'04 Funding:

\$300 K

Technical Barriers and Targets

- This project addresses DOE's Technical Barriers for Fuel Cell Components
 - O: Stack Material and Manufacturing Cost
 - P: Component Durability
 - Q: Electrode Performance
- DOE's Technical Targets:
 - Low cost, <\$5/kW
 - Durability, >5,000 operating hours

Approaches

- Complex oxides containing transition metals with multiple oxidation states (e.g., spinels and perovskites)
 - Oxides of metals with multiple oxidation states (e.g., Co, Ni, Fe, Mn) contain oxygen vacancies or defects that may facilitate oxygen binding and dissociation
 - Host oxide is chosen to be stable in the acidic environment (e.g., titanium and chromium oxide)

Transition metal carbides and nitrides

- Contain surface vacancies and defects
- Isoelectronic with platinum (e.g., WC), catalytically active in hydrotreating and dehydration reactions
- Resistant to acidic corrosion and electronically conducting
- Metal centers attached to an electron-conducting polymer backbone
 - Allows easy control of spacing between metal centers
 - Electron conductor in close proximity to reaction site can promote high catalyst utilization

Safety

- Internal safety reviews have been performed for all aspects of this project to address ESH issues
 - Electrocatalyst and electrocatalyst/electrolyte ink synthesis
 - All synthesis is performed in a hood to exhaust vapors of organic solvents and to prevent dust inhalation
 - Used electrocatalysts and inks are collected and disposed of through the laboratory's Waste Management Operations
 - Electrocatalyst testing
 - Purge gas is either inert Argon or Oxygen

Safety reviews are updated and renewed annually

Project timeline

- I: Establish and verify test procedure
- 2: Identify one or more potential cathode electrocatalysts
- Oetermine kinetics and stability of potential electrocatalysts ✓
- 4: Begin first principles calculations, quantum chemical modeling to guide selection of potential electrocatalysts
- 5: Refine choice of electrocatalysts based on modeling and experimental work and evaluate these catalysts
- 6: Fabricate and evaluate a membrane-electrode assembly using newly-developed cathode electrocatalyst

A rotating ring-disk electrode apparatus is being used to evaluate ORR kinetics

Electrocatalyst preparation

- Mix powdered electrocatalyst with 5 wt% solution of polymer electrolyte (Nafion[®]) to form an ink
- Vulcan XC72 carbon is added to ink if material is not an electron conductor
- Ink supported on a glassy carbon rotating disk electrode (RDE)

• Electrochemical measurements (23°C)

- RDE/thin film technique allows one to eliminate the effects of mass transfer
 - Platinum ring electrode will be used to detect intermediates $(e.g., H_2O_2)$
- Background voltammograms in deaerated 0.5 M H₂SO₄ to determine material stability
- Steady-state voltammograms in O₂-saturated 0.5 M H₂SO₄ at various rotation rates to determine kinetics of ORR

-

The kinetics of the oxygen reduction reaction (ORR) were determined on Pt/C to verify the RDE technique

Electrocatalyst

- 20 wt% Pt on Vulcan XC-72 (E-TEK)
- Mixed with 5 wt% of polymer electrolyte (Nafion[®]) to form an ink with Pt/C : Nafion = 60:40
- Ink supported on a glassy carbon rotating disk electrode (RDE)

Electrochemical measurements (23°C)

- In Ar-deaerated 0.5 M H₂SO₄
 - Used to determine the electrochemically active surface area of Pt from hydrogen adsorption/desorption peaks in the cyclic voltammogram
 - Background voltammograms at various rotation rates
- In O₂-saturated 0.5 M H₂SO₄
 - Steady-state voltammograms of the ORR at various rotation rates

Levich-Koutecky equation used to extract kinetic current from steady-state voltammograms

 Steady-state voltammograms of the ORR on Pt/C/Nafion[®] on a glassy carbon RDE

Equation	Electrode Type		
Levich-Koutecky equation $\frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{12}$	Smooth electrode		
$i i_k i_d i_k K \omega^{n-1}$ Kinetic current derived from Levich-Koutecky equation $i_k = \frac{i_d \cdot i}{i_d - i}$	Smooth electrode		
Extended Levich-Koutecky equation $\frac{1}{i} = \frac{1}{i_k} + \frac{1}{i_f} + \frac{1}{i_d} = \frac{1}{i_k} + \frac{1}{i_f} + \frac{1}{K\omega^{1/2}}$	Thin film electrode		

• Three methods were used to determine the ORR kinetic current from the RDE experiments on Pt/C

Tafel plots were used to extract kinetic parameters for the ORR on Pt/C/Nafion[®]

• Tafel plot
$$\eta = \frac{RT}{\alpha nF} \ln i_o - \frac{RT}{\alpha nF} \ln i$$
, $\eta = E - E_{eq}$

• Tafel-like plot
$$E = E_{eq} + \frac{RT}{\alpha nF} \ln i_o - \frac{RT}{\alpha nF} \ln i$$

• A plot of *E* vs. In*i* should give a straight line with

Slope =
$$-\frac{RT}{\alpha nF}$$
, Intercept = $E_{eq} + \frac{RT}{\alpha nF} \ln i_o$

Tafel slopes for the ORR on Pt/C/Nafion[®] agree well with literature values

Tafel plot of ORR on Pt/C electrode has high and low slope regions

Method to obtain i _k		Negative scan direction		Positive scan direction	
		Tafel slope (mV/dec)		Tafel slope (mV/dec)	
	Average of all	low i	high i	low i	high i
(id · i)/(id – i) rotation rates	rotation rates	-58	-127	-82	-124
Levich-Koutecky		-77	-134	-86	-134
Extended Levich-Ko	utecky	-73	-130	-86	-136
Martin (1992) Microelectrode Pt	30°C, 5 atm	-65	-123		
	50°C, 1.1 atm	-71	-130		
Gojkovic (1998) Pt/C	/Nafion mixture, 25°C	-60		-80	
Paulus (2001) Pt/C/N	afion film, 20ºC			-63	-120

Exchange current density for the ORR on *Pt/C/Nafion[®] agrees with literature values*

Tananatan	i _o (A/cm²)				
(°C)	Negative scan		Positive scan		Remarks
	low i	high <i>i</i>	low i	high <i>i</i>	
23	4.6 x 10 ⁻¹¹	9.3 x 10⁻ ⁸	1.0 x 10 ⁻⁹	9.4 x 10 ⁻⁸	This work Averaged for 100 ~ 2500 rpm
30	1.7 x 10 ⁻¹⁰	2.8 x 10 ⁻⁷			Martin (1992)
40	7.3 x 10 ⁻¹⁰	3.2 x 10 ⁻⁷			Pt microelectrode $Po_2 = 5$ atm
40	2.0 x 10 ⁻⁹				Appleby (1993)
95	3.1 x 10 ⁻⁹				20 wt% Pt/C in a full cell

13

Progress on testing candidate materials

Oxides	Milling	Oxide to Carbon Ratio (wt%)			Composite to Nafion Ratio (vol%)
Co-Cr-O	Wet, 16h	20:80	50:50	80:20	50:50
Ni-Cr-O	دد	20:80	50:50	80:20	62:38
Fe(III)-Ti-O	Dry, 16h		20:80		64:36
Fe(II)-Ti-O	Wet, 9h	50:50	8	30:20	40:60
Fe(III)-Ti-O	No milling		75:25		40:60
Ce-W-O	"	65:35	8	35:15	40:60
Ce-V-O	No milling		80:20		40:60

- Voltammetry of Ni-Cr-O/Carbon/Nafion showed ORR activity, but instability in acidic environment
- Other complex oxides showed either no ORR activity or instability in acid
- Beginning testing of carbides and nitrides

14

Future work – FY'04 and beyond

- Investigate methods for stabilizing complex transition metal oxides
- Test the ORR activity of select transition metal carbides and nitrides
- Begin synthesis of metal centers attached to polymer backbones
- Incorporate higher temperature ORR kinetic measurements when a high-temperature RDE becomes available
- Begin theoretical work (e.g., DFT calculations) to guide choice of candidate materials
- Fabricate and test a membrane-electrode assembly using newly-developed cathode electrocatalyst

- Funding from the U.S. Department of Energy, Energy Efficiency, Renewable Energy: Hydrogen, Fuel Cells & Infrastructure Technologies Program is gratefully acknowledged
- Nancy Garland, DOE Technology Development Manager

