2004 DOE Hydrogen, Fuel Cell and Infrastructure Technologies Program Review

Low-Cost, High-Pressure Hydrogen Generator

Cecelia Cropley Giner Electrochemical Systems, LLC May 26, 2004

This presentation does not contain any proprietary or confidential information

Project Objectives

Overall Project

- Develop and demonstrate a lowcost, high-pressure water electrolyzer system
 - Eliminate need for mechanical hydrogen compressor
 - Increase electrolyzer hydrogen discharge pressure to 5,000 psig
 - Reduce capital costs to meet DOE targets
 - Demonstrate a 3,300 scfd highpressure electrolyzer operating on a renewable energy source
 - Public outreach and education

Project Objectives

Past Year (Jan 03- Mar 04)

- Develop lower cost materials and fabrication processes for stack components
- Develop, fabricate and demonstrate an electrolyzer stack and system producing hydrogen at 2,000 psig
- Design, fabricate and test a prototype electrolyzer system that delivers hydrogen at 2,000 psig
- Design and fabricate a test stand for 5,000 psig operation

Budget

Total Project Budget: \$3.026M
DOE Share: \$1.499M
Cost Share: \$1.527M
FY04 Funding
DOE: \$245K
Contract awarded April 04
Cost Share Funding to Date: \$819K
Jan 03- Mar 04

Technical Barriers

DOE Technical Barriers for Hydrogen Generation by Water Electrolysis

- Q. Cost- capital cost, O&M
- R. System Efficiency- replace mechanical compressor with electrochemical compression
- S. Grid Electricity Emissions
- T. Renewable Integration
- U. Electricity Costs

DOE Technical Targets for Water Electrolysis for 2010 (for 250 kg/day system)

	Energy Efficiency (%LHV)	Cost \$/kg
Cell Stack	81	0.25
Balance of Plant	98	0.07
Compression	95	0.16

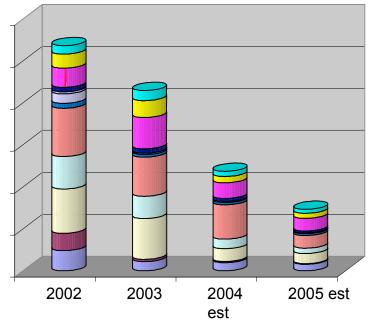
Approach

- Incrementally increase the operating pressure of the GES differential pressure electrolyzer, through improved seal and endplate design
 - 1,000 psid in 2002; 2,000 psid in 2003
 - Planned further increases to 3,500 and 5000 psid
- Replace high-cost metal components with lower-cost materials
- System innovations to replace high-cost, high maintenance components

Project Safety

- GES has initiated a failure mode and effects analysis (FMEA) for our laboratory operations and prototype electrolyzer systems
- GES is developing a management of change (MOC) process for the project
 - Changes in stack and system components, control systems or algorithms, and operating procedures must be approved by project safety committee

Project Timeline

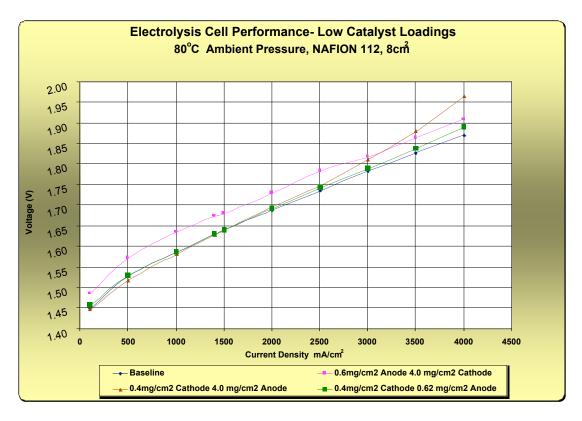

Task	2003			2004				2005				
	1	2	3	4	1	2	3	4	1	2	3	4
TASK 1. Stack Cost Reduction												
DEMONSTRATED LOW -COST CATHODE SUPPORT		X										
REDUCED STACK PARTS COUNT		Χ										
TASK 2. BOP Cost Reduction												
TASK 3. High Pressure Stack D esign												
<i>TASK 4 2,000 psi Prototype</i> COMPLETED STACK&SYSTEM			X									
Extended testing of Prototype System												
<i>TASK 5. 5,000 psi Test Stand</i> COMPLETED STAND FABRICATION			X									
TASK 6. 3,500 psi Short Stack Stack Complete									Δ			
TASK 7. High Pressure System	_										Δ	
System Complete	_										Δ	
<i>TASK 8. 5,000 psi Short Stack</i> Stack Complete											Δ	
TASK 7. Public Outreach/Education												

Technical Accomplishments

Stack Cost Reduction

- Developed and demonstrated a low-cost cathode support
- Reduced electrolyzer stack parts count by >50%
- 30% reduction in stack materials cost, 40% reduction in fabrication labor
- Demonstrated operation of lab-scale hardware at 10,000 Amps/ft²

Electrolyzer Stack Material Cost Reduction


Technical Accomplishments

Increased Operating Pressure
 Developed and demonstrated operation of 140 scfd stack at 2000 psid
 Developed, fabricated and demonstrated a system for production of 140 scfd hydrogen at 2000 psid

Technical Accomplishments

Improved stack efficiency

- Reduced cell voltage by 10% while decreasing MEA cost
- Single-cell durability
 - Demonstrated > 1,000 hours

Interactions and Collaborations

- Collaboration with General Motors to develop low-cost electrolyzers for the hydrogen economy
- Center for Technology Commercialization in Westborough, MA will provide public education and outreach
 - K-12 teacher education
 - demonstrations and literature distribution at energy and transportation fairs and related venues

Future Plans

- Remainder of FY 2004
 - Develop and implement FMEA and MOC programs
 - Develop a low-cost anode support structure
 - Demonstrate and test in short-stacks
 - Durability testing of low-cost cathode support
 - Cycle in automated test-stand at 1,000 psid
 - Demonstrate for minimum of 10,000 cycles over 2,000 hours
 - □ Improvements to 2,000 psid system
 - Extended testing for approximately 500 hours

Future Plans

FY 2005

- Cost Reduction
 - Continue reduction in stack parts count
 - Reduce stack costs by additional 35-50%
- Stack and System Development
 - Develop and demonstrate 3,500 psid electrolyzer stack and system
 - Design, fabricate and demonstrate 5,000 psid short-stack