

U.S. Department of Energy Energy Efficiency and Renewable Energy

# DOE Hydrogen Program EERE Hydrogen Production and Delivery

Pete Devlin

Office of Hydrogen, Fuel Cells, & Infrastructure Technologies U.S. Department of Energy May 24, 2004



- **Arlene Anderson** Distributed Reforming (Natural Gas, Liquid Fuels)
- **Roxanne Danz** Overall Feedstock/Production/Delivery Strategy and Analysis and Direct Water Splitting Using Photolytic Processes
- Matt Kauffman Electrolysis and Electricity Infrastructure Integration
- Mark Paster Hydrogen Production with Biomass and Hydrogen DeliveryPete Devlin - Team Leader



## Research and develop low-cost, highly efficient hydrogen production technologies from diverse, domestic sources, including fossil and renewable sources.

By 2010 Complete Research to Achieve:

- \$1.50/kg hydrogen (delivered, untaxed) for distributed production from natural gas and/or liquid fuels.
- \$2.85/kg with distributed/central electrolysis.
- \$2.90/kg hydrogen at the plant gate from biomass pyrolysis.
- \$4/kg hydrogen at the plant gate for a solar-driven thermochemical water splitting cycle.

By 2015 Demonstrate:

- Engineering-scale biological system producing H2 at a plant-gate cost of \$10/kg projected to commercial scale.
- Direct PEC water splitting with a plant-gate  $H_2$  production cost of \$5/kg projected to commercial scale.



Develop hydrogen fuel delivery technologies that enable the introduction and long-term viability of hydrogen as an energy carrier for transportation and stationary power.

- 1. By 2006, define a cost-effective and energyefficient hydrogen fuel delivery infrastructure for the introduction and long-term use of hydrogen for transportation and stationary power.
- 2. By 2015, reduce the total cost of hydrogen fuel delivery to <\$1.00/kg.







- Work with industry partners to identify technical issues, establish mutual goals, and evaluate progress
- Focus on high risk production and delivery R&D
  - Near and long term pathways
  - Central and distributed technologies
- Structure research to encompass diverse energy feedstocks and sources including natural gas, liquid fuels, solar, wind and biomass
- Execute projects under cost-shared agreements
- Measure progress regularly in a peer reviewed process



Budget

#### FY 2005 Budget Request = \$25.3M FY 2004 Appropriation = \$22.6M



### • Emphasis:

- Distributed natural gas and liquid reforming systems
- Renewable Technologies (photolytic, wind electrolysis)
- -Initiate delivery R&D

### Budget Obligations:

| Fulfill current contracts | \$2.5M  |
|---------------------------|---------|
| Maintain Laboratory R&D   | \$9.0M  |
| Solicitation new starts   | \$13.8M |
| Total                     | \$25.3M |



## Key Barriers – Distributed Hydrogen Production

## Reforming of Natural Gas and/or Liquid Fuels

- Capital costs
- Operation and maintenance

### Water Electrolysis

- Electrolyzer capital costs and efficiency
- Grid electricity emissions







TELEDYNE TITAN<sup>T#</sup> EC Hydrogen/Oxygen Gas System 28 - 42 Nm<sup>1</sup>/hr (H<sub>2</sub>)



## Distributed Production of Hydrogen from Natural Gas and Liquid Fuels





# Hydrogen Production Targets

## **Production of Hydrogen from Water Electrolysis**



\* Based on grid supplied electricity with a large percentage of wind and grid supported electrolysis at a refueling station



- Biomass Gasification/Pyrolysis
  - High capital cost of gasification/pyrolysis systems
- High-Temperature Thermochemical
  - Unproven thermochemical cycles
  - High-temperature (HT) materials



## **Central Hydrogen Production**

(plant gate) \$12 \$12.00 \$/kg (at plant gate) \$10.00 \$8.00 \$6.10 \$6.00 \$4.00 \$4.00 \$2.90 \$2.00 \$2.00 \$2.00 \$0.00 **Biomass HT Thermochem** 2003 2010 2015



- Light utilization efficiency
- Rate of hydrogen production
- Continuity of photoproduction
- Materials
- Photoelectrochemical efficiency



## **Long-Term Hydrogen Production**





**Barriers – Cross Cutting** 

- Reforming Catalysts
- Process Simplification
- Hydrogen Separation and Purification
- High-Purity Water Availability



- High capital costs for pipelines and liquefaction
- Low energy efficiency of liquefaction
- Low compressor reliability/durability









# **R&D** Portfolio

### Distributed Natural Gas Reforming

- APCI: Turnkey refueling station
- Praxair: Low cost production platform (DFMA analysis)
- FY04 Solicitation (1-3 new projects)

Separations

- Praxair: Integrated ceramic membrane reactor system focused on hydrogen transport membrane and tube development
- APCI: Ceramic membrane development
- SNL: Inorganic thin film membrane development
- ORNL: Ion transport membrane development
- LANL: Photopolymerization/pyrolysis membrane microstructure development
- FY04 Solicitation (1-3 new projects)





# **R&D** Portfolio

### **Biomass Gasification/Pyrolysis**

- Startech: Plasma gasification/membrane separations
- NREL: Pyrolysis
- FY04 Solicitation (1-3 new projects)

### HT Thermochemical Cycles

- UNLV Consortium: Solar based cycles
- FY04 Solicitation (1-3 new projects)

### Delivery

- Analysis: Part of H2A, Winds-H2 (NREL), HyTrans (ORNL, ANL)
- Ergenics: Hydride based compression and purification
- ORNL: Pipeline materials R&D
- FY04 Solicitation: Analysis, Pipelines, Liquefaction, Compression, Novel Carriers (4-8 new projects)



# **R&D** Portfolio

### Photolytic

- UC Berkeley, ORNL, and NREL: Three projects to increase light absorption efficiency, reduce hydrogenase oxygen intolerance, and insert a polypeptide proton channel to increase hydrogen production efficiency in green algae.
- NREL, UC Santa Barbara, U of Hawaii, and SRI: Four material science projects to design/discover new materials with appropriate energetics to directly split water using sunlight.
- FY04 Solicitation
- Electrolysis
- Teledyne, Proton, and Giner: Three new advanced high-pressure electrolysis projects started
- Sandia: Membrane, electrode, catalyst research
- NREL: Renewable power electronics integration
- FY04 Solicitation (2-4 new projects)





## Technical Accomplishments/ Progress

### Distributed Production from Natural Gas

- Target
  - On target for \$3.00/kg H<sub>2</sub> cost at dispenser (690 kg/day, 11% capital factor, >100 units annually, \$4/MMBTU(HHV) NG, 90% utilization)
- Reformer R & D
  - Optimizing desulphurization, reformer, and shift catalysts
  - Improving heat recovery system
- Purification R & D
  - Improved Pressure Swing Absorption (PSA) system to deliver 99.999% pure H2 from a SMR stream at 120 psig
  - 3x reduction in cost of PSA when compared with commercially available units.
  - Advanced PSA unit much smaller than commercially available units
  - Efficiency Exceeds Program 2005 Target of 82% (from 75% in 2003)







## Technical Accomplishments/ Progress

#### Delivery

- H2A Delivery analysis will set a benchmark
- Ergenics: Hydride based compression and purification demonstrated
- FreedomCAR and Fuel Partnership Delivery Tech Team initiated, draft roadmap expected by year end

#### Biomass Gasification/Pyrolysis

• NREL demonstrated improved reforming catalyst reducing attrition and coking

#### Electrolysis

- Analysis of wind technologies for hydrogen production (NREL)
- Industry meeting on hydrogen production from wind and hydropower
- Developing baselines using H2A analysis on forecourt and central electrolysis

#### HT Thermochemical Cycles

• UNLV Consortium: Completing database and ranking of cycles and solar concentrators



# Technical Accomplishments/ Progress

## Photobiological

- Reduced chlorophyll antenna size of green algae by 58% to increase utilization efficiency of absorbed sunlight energy to  $\sim 15\%$ .
- 6 months continuous H<sub>2</sub> photoproduction

## Photoelectrochemical

- Developed a new material, gallium phosphide nitride (GaPN), that should make the 2005 goal of 7% efficiency and 1000 hours lifetime.
- Identified cost-effective zinc based mixed metal oxides with 4 times solar-to-hydrogen production efficiencies improvement.
- Began developing models that will assist in the identification of materials that will meet the DOE targets for PEC hydrogen production.



# Interactions & Collaborations

- Office of Fossil Energy
- Office of Science
- EERE
  - Wind and Hydropower
  - Solar

- FreedomCAR & Fuel Partnership
- IPHE
- IEA
- Interagency Task Force

- Universities
- Gov. Labs
- Industry

Ohio U.





### Summary of Planned H2 Production and Delivery R&D Funding\*

| <u>Topic</u>                              | <u>Total \$ (M)</u> | <u>Annual DOE \$</u><br>( <u>M)</u> | <u>Industry Cost</u><br><u>Share</u> |
|-------------------------------------------|---------------------|-------------------------------------|--------------------------------------|
| • Biomass to H2                           | \$15 M              | \$4-6 M                             | 20%                                  |
| • Photolytic                              | \$11 M              | \$3 M                               | 20%                                  |
| <ul> <li>Distributed Reforming</li> </ul> | \$8 M               | \$2 – 3 M                           | 30%                                  |
| <ul> <li>Separation</li> </ul>            | \$10 M**            | \$3 - 4M                            | 20%                                  |
| • Electrolysis                            | \$8 M               | \$2 – 3 M                           | 20 - 25%                             |
| • High Temperature<br>Thermochemical      | \$10 M              | \$2-4 M                             | 20%                                  |
| <ul> <li>Production Analysis</li> </ul>   | \$2 M               | \$600 K – 1 M                       | N/A                                  |
| • Delivery                                | \$15 M              | \$3 – 6 M                           | 20-30%                               |
| <ul> <li>Crosscutting Projects</li> </ul> | \$10 M              | 2 - 4 M                             | 20-30%                               |
| <ul> <li>University Projects</li> </ul>   | \$7.5 M             | \$1 – 2 M                           | 20%                                  |

\* All funding is subject to availability of funds through the annual appropriations process. \*\* Includes Office of Fossil Energy commitment of \$1 Million per year.



- Revise draft RD&D to reflect new developments and analyses results
- Implement NAS recommendations with emphasis on:
  - Electrolyzer development to lower capital costs
  - Distributed reforming
- Leverage our long term research goals with expanded Office of Science fundamental work:
  - Materials catalysts, membranes, pipelines
  - Photolysis electrochemical, biological
- Select new projects from solicitation that achieve cost and efficiency targets