Integrated Ceramic Membrane System for H₂ Production

Cooperative Agreement: DE-FC36-00GO10534

Joe Schwartz Ray Drnevich Prasad Apte Ashok Damle

Praxair - Tonawanda, NY Research Triangle Institute -Research Triangle Park, NC

DOE Annual Merit Review Meeting May 24, 2004

Copyright © 2004 Praxair, Inc.

This paper was written with support of the U.S. Department of Energy under Contract No. DE-FC36-00GO10534. The Government reserves for itself and others acting on its behalf a royalty-free, nonexclusive, irrevocable, worldwide license for Governmental purposes to publish, distribute, translate, duplicate, exhibit and perform this copyrighted paper. This presentation does not contain any proprietary or confidential information.

Objectives

> Program - Develop a low-cost reactive membrane based hydrogen production system

- Use existing natural gas infrastructure
- High thermal efficiency
- Transportation and industrial markets

Phase IIA - Develop a cost-effective hydrogen transport membrane (HTM)*

- Produce Pd-based HTM
- Low-cost hydrogen separation and purification
- Demonstrate HTM performance in non-reactive environments

* The OTM is under development outside of this program

	Phase I	Phase IIA	Total	FY2004
DOE	\$224,679	\$371,869	\$596,548	\$116,941
Praxair	\$ 74,893	\$123,957	\$198,850	\$38,980
TOTAL	\$299,572	\$495,826	\$795,398	\$155,922

FY2004 spending through March 31, 2004

DOE Technical Barriers

- > A. Fuel Processor Capital Costs
- > B. Operation and Maintenance (O&M)
- > C. Feedstock and Water Issues
- E. Control and Safety
- > Z. Catalysts
- > AA. Oxygen Separation Technology
- > AB. Hydrogen Separation and Purification

Palladium Membrane Targets

	2003	2005	2010
Flux (scfh/ft²)	60	100	200
Cost (\$/ft ²)	150-200	100-150	< 100
Durability (hrs)	< 1000	50,000	100,000
Operating Temp (°C)	300-600	300-600	300-600
Parasitic Power (kWh/1000 scfh)	3.2	3.0	2.8

- Flux based on 20 psid hydrogen pressure at 400°C
- Parasitic power based on hydrogen compression to 200 psi

Program Approach

Phase I - Define Concepts

- Technoeconomic Feasibility Study
- Define Development Program

> Phase II - Bench-Scale HTM Development

- A Develop and Test HTM Alloy and Substrate
- B Integrate HTM and WGS in Single Tube Tests

> Phase III - Multi-Tube Reactor Development

- Pilot Scale Demonstration
- Define Mass Production Methods

OTM/HTM Concept Preferred Process - Sequential Reactors

OTM Reactor Synthesis gas generation $CH_4 + \frac{1}{2}O_2 \rightarrow 2H_2 + CO$ $CH_4 + H_2O \rightarrow 3H_2 + CO$ HTM Reactor Water-gas shift reaction CO + $H_2O \rightarrow H_2 + CO_2$ Hydrogen Separation

OTM/HTM Concept Preferred Process - Sequential Reactors

OTM Reactor Synthesis gas generation $CH_4 + \frac{1}{2}O_2 \rightarrow 2H_2 + CO$ $CH_4 + H_2O \rightarrow 3H_2 + CO$ HTM Reactor Water-gas shift reaction CO + $H_2O \rightarrow H_2 + CO_2$ Hydrogen Separation

Phase IIA Plan

Select Substrate

- Strength, Thermal Expansion Match
- Metal or Ceramic

Select Alloy

• Flux, Life, Cycling, Contaminant Resistance (S, CO, ...)

Membrane Testing

Confirm Performance in Simulated Syngas Environment

> Process Economics

Confirm Membrane is Cost-Effective

> Phase IIB and Phase III Plan

Project Safety

- Safety reviews conducted for all equipment
- All applicable external and internal standards followed
- Potential safety issues will be identified as testing progresses
 - Incorporate safety information in component design
- FMEA or HAZOP to be performed after detailed PFD is defined

Program Timeline

7/00 - 2/0	2	2/03-8/05		9/0	5-12/	/06	
Phase I		Phase II		Pl	nase	Ш	
1	2	3 4	5	6	7	,	89

> Phase I - Feasibility

- 1 Selected Two-Stage Process with Pd Membrane
- 2 Assessed Economics Vs. Current Options

> Phase II - Hydrogen Membrane Development

- 3 Select Alloy and Substrate
- 4 Membrane Production and Testing
- 5 Verify Reactor Performance and Update Process Economics

> Phase III - System Design and Testing

- 6 Design (DFMA Focus) and Fabricate Multi-Tube Pilot Unit
- 7 Operate Pilot Unit
- 8 Verify System Performance and Update Process Economics
- 9 Develop Commercial Offering

Accomplishments and Progress

- > Pd-Ag alloy composite membrane tubes produced that are leak tight with reasonable flux
- First successful test in September
- Flux has almost doubled in the last 5 months
- > Pore size decreased from > 50 μ m to < 5 μ m
- > Alloy and substrate optimization in progress
- Initial economic analysis looks promising
 - Pd/Ag cost for 2000 scfh H_2 production is under \$2500 for 10- μ m film

Substrate Progress

Substrate	Pore Size	Nitrogen Leak	Hydrogen Flux
Fabrication	(μm)	Rate, 25°C	40 psi 550°C
Date		(ccm/cm²)	(ccm/cm²)
Feb 2003	> 50		N/A
Mar-Apr	50		N/A
Apr-Jun	20	20 at 10 psid	N/A
Jun-Aug		3 at 5 psid	N/A
Sep-Nov	5-10	1 at 30 psid	18.8
Dec-Mar	< 5	< 1 at 30 psid	33

Progressive changes in pore former and fabrication method have enabled significant reduction in pore size, and corresponding film thickness

Palladium Membrane Flux

Palladium Membrane Flux

Further substrate improvement is necessary

• Film needs to be less than 2 μm to meet target flux

PRAXAIR

Accomplishments vs. Targets

	Current	2005	Next Step
Flux (scfh/ft²)	22	100	Improve substrate and coating
Cost (\$/ft ²)	150	100-150	Decrease substrate and coating costs
Durability (hrs)	> 200	50,000	Conduct life test
Operating Temp (°C)	300-600	300-600	none
Parasitic Power (kWh/1000 scfh)	3.2	3.0	H ₂ compression outside current program

Flux based on 20 psid hydrogen pressure at 400°C

Future Work (2004-05)

Complete Phase IIA

- Demonstrate Pd membrane performance in non-reactive environment
- Confirm that the OTM/HTM system can produce hydrogen at low cost

Start Phase IIB

- Demonstrate Pd membrane performance in single tubes
 integrated with water gas shift reaction
- Confirm that the OTM/HTM system can produce hydrogen at low cost

Interactions and Collaborations

> Praxair

- Leader in hydrogen purification, production, and distribution
- Leader in electroceramic materials dielectrics, superconductors, ...
- Overall program lead
- Substrate development
- Process development and economics

> Research Triangle Institute

- Membrane Development
- Palladium Coating
- Membrane Testing

Joint

- Membrane Production
 - Unique opportunity to integrate substrate and alloy development
 - Iterative process
- Reactor Design

2003 Questions

Main weakness sited was lack of hard data

- Testing has now begun and data were presented
- > 2003 Recommendation Add partners to help with pretreatment and reforming
 - Phase II focuses on HTM development
 - We are considering adding a partner to help with WGS catalyst

Integrated Ceramic Membrane System for H₂ Production

Cooperative Agreement: DE-FC36-00GO10534

Questions?

DOE Annual Merit Review Meeting May 24, 2004

