

Adapting Planar Solid Oxide Fuel Cells for use with Solid Fuel Sources in the Production of Distributed Power

Greg Kremer, Gerri Botte, Ben Stuart and Dave Bayless *Ohio University* Eric Barringer, Ted Ohrn SOFCo-EFS Holdings LLC May 24, 2004

OHIO UNIVERSITY

This presentation does not contain any proprietary or confidential information

Objectives

Program Objectives

- Quantify impacts of synthesis gas composition on performance of a commercial planar solid oxide fuel cell system (cell and stack)
 - $-H_2S$ content
 - CO/H₂ ratio and energy content of gas
 - Particulate
 - Metal content
- Demonstrate long term operation of pSOFCs using actual sold fuel-derived synthesis gas
- Integrate CHP into distributed H₂ production

Project Approach

Distributed CHP and Hydrogen

- Develop fuel cell CHP from solid fuels
- Test pSOFCs for tolerance to syngas contaminants using single cell and stack platforms
- Use of CO tolerant pSOFCs allow H₂/CO separation without gas shift reactors
- Integrate CHP into distributed H₂ production

Project Approach

Project Approach

Technical Barriers and Targets

HFCIT Program Plan

- DOE Technical Barriers for Distributed Generation
 - Improved CO tolerance
 - Develop CHP fuel cell systems
 - Verify integrated stationary fuel cell systems
 - Mitigate technical barriers to stationary fuel cells
- DOE Technical Targets for 2010
 - 40,000 hours durability
 - \$1000/kWe

Budget

Budget and Expenditures		
Category	Budget	Expenditures
Personnel	\$673,269	\$175,157
Fringe Benefits	\$140,579	\$37,029
Travel	\$16,500	\$6,523
Equipment	\$107,749	\$27,989
Supplies	\$84,483	\$61,058
Contractual	\$419,990	\$111,096
Construction	\$0	\$0
Other	\$263,165	\$84,483
Total Direct Charges	\$1,705,735	\$503,335
Indirect Charges	\$589,835	\$125,768
Total	\$2,295,570	\$629,103
DOE Share	\$1,926,744	\$505,133
Cost Share	\$368,826	\$123,970

Project Safety

Hydrogen, Carbon Monoxide and H₂S Concerns

- FMEA Analysis
- Chemical hygiene training
- H₂S training
- Gas containment and scrubber system
- Operational SOP's
- PSD's gas monitors, SKAT packs, room monitors
- Verification gases to test monitors/detectors
- Notification and review with local authorities for the types and quantities of gases used

Project Timeline

- 1. Modeling syngas/SOFC interface
- 2. Fabricate/install syngas system
- 3. Fabricate/install cell test stands
- 4. SOFC training for interns
- 5. SOFC material analysis baseline
- 6. Synthetic syngas testing
 - 6.1 Baseline syngas
 - 6.2 Effect of Hg
 - 6.3 Effect of sulfur
 - 6.4 Effect of particulate
 - 6.5 Effect of energy content
 - 6.6 Effect of O₂ in oxidizer
- 7. Electrostatic separation testing
- 8. H₂:CO separation or shift
- 9. Integration of fuel cells/gasifier

Aug 03-Dec 04 Sep 03-May 04 Sep 03-May 04 Apr 04-Jun 04 May 04-Aug 04 May 04-Dec 05

Aug 04-Sep 06 Aug 05-Aug 07 Jan 06-Aug 07

Gas Delivery (including H₂S)

Gas Delivery (including H₂S)

Test Stands

Modeling

- Aspen platform
- Electrochemical model
- Thermal model
- Reforming/Gas Cleaning model
- Flow model

Interactions and Collaborations

Academic and Industrial Partnerships

- SOFCo-EFS (Fuel Cells)
- Case Western Reserve University
- University of Cincinnati
- State of Ohio's Air Quality Development Authority
- BAARD (Power Generation)
- Enercon (Gasification/Steam Reforming)

Future Work

Near and Long Term Plans

- Quantify impacts of synthesis gas composition on performance of a commercial planar solid oxide fuel cell system (cell and stack)
 - $-H_2S$ content
 - CO/H₂ ratio and energy content of gas
 - Particulate
 - Metal content
- Demonstrate long term operation of pSOFCs using actual sold fuel-derived synthesis gas
- Integrate CHP into distributed H₂ production

Future Work

www.ohio.edu/isee/fuelcells

www.ohio.edu/engineering