Photopolymerization/Pyrolysis Route to Microstructured Membrane Development

> Kathryn A. Berchtold Jennifer S. Young

Los Alamos National Laboratory Materials Science & Technology Division

26 May, 2004

This presentation does not contain any proprietary or confidential information

Objectives

Provide a rational approach to the design of synthesis processes for robust ceramic membranes with high gas permselectivity.

Sunding in FY04 : 200K

Subtask 1a: Establishment of the membrane fabrication and testing capability and a coarse grained approach to understanding the interrelationship between polymer microstructure and composition and the separation characteristics of the ceramic membrane product.

Technical Barriers and Targets

- **DOE** Technical Barriers for Hydrogen Production:
 - Distributed Hydrogen Production from Natural Gas or Liquid Fuels Barriers
 - A. Fuel Processor Capital Costs
 - D. Carbon Dioxide Emissions
 - General (Cross Cutting) Hydrogen Production Barriers
 - AB. Hydrogen Separation and Purification
- DOE Technical Target for Separation Membranes for Hydrogen Production for 2010
 - Flux Rate 200 scfh/ft²
 - ➢ Cost <\$100/ft²
 - Operating Temperature 300-600 °C

Formation of defectfree, robust, ceramic membranes that will maintain gas productivity and selectivity to temperatures in excess of 1000°C Fabrication of these membranes via economically viable and established polymer processing

techniques.

MS

Spin Coat / Cast

(spin cycle conditions, acceleration, velocity, & duration of each step in the cycle)

amos

LANL LA-UR-04-2805

UV/Vis Exposure

(wavelength, environment, intensity, initiation mechanism & rate, temperature)

Pyrolysis

(environment, pyrolysis rate, ultimate temperature)

Impact

- First commercially viable production of ceramic membranes
- Senabling technology for fuel reforming
- Reduction of parasitic losses in carbon sequestration processes

Schallenges

- Forming defect free membranes
- > Optimizing membrane fixturing
- > Optimizing processing conditions to achieve meaningful selectivity and permeability

Project Safety

Integrated Work Management

All processes are compliant with the LANL Integrated Work Management process. All processes have had the required management walk-downs. All of the associated Integrated Work Documents / Hazard Control Plans have had all required reviews and all required approvals have been obtained.

Project Timeline

	1/04	3/04	5/04		7/04	9/04	11/04	
	A B		С	D	E		F	
_		Ι			II	III		

- Phase I Feasibility/Capability Development
 - A. Design coarse grained experimental program
 - B. Select Initial Material Chemistries/Functionalities to Evaluate
 - C. Establish membrane synthesis capability through the proposed processing route.
 - This capability includes all processing steps and experimental protocols necessary to produce, characterize, and test a ceramic membrane as it is produced from inorganic/organic photoactive precursors. Extend our high temperature testing capabilities.

Phase II – Pre-Ceramic Polymer and Ceramic Thin Film Development & Testing

- D. Perform initial evaluations on a limited set of preceramic polymer precursors with dramatically different microstructures.
 - Report results on polymer thin film material properties as a function of comonomer composition and polymerization conditions
- E. Perform initial evaluations on amorphous ceramic thin film material properties as a function of pre-ceramic polymer properties and pyrolysis conditions
 - Report results from initial ceramic material evaluations
- Phase III Amorphous Ceramic Membrane Testing
 - F. Membrane production and testing
 - Report results from initial evaluations on amorphous ceramic membrane permselectivity as a function of pre-ceramic polymer properties, pyrolysis conditions, and operating temperature

Technical Accomplishments/Progress

- Established membrane synthesis capability through the proposed processing route with selected materials.
 - Established Experimental Design
 - Selected Chemistries/Materials for Initial Evaluation
 - Integrated Work Management
 - All processes are compliant with the LANL Integrated Work Management process. All
 processes have had the required management walk-downs. All of the associated
 Integrated Work Documents / Hazard Control Plans have had all required reviews
 and all required approvals have been obtained.
 - With a Single Formulation:

amos

- Initial film casting procedures were established
- Cast films were photopolymerized under controlled conditions
- Polymerization kinetics monitoring and evaluation protocols were established and tested
- Controlled Pyrolysis Capability was Established
 - * Multiple atmospheres including reactive environments can be used
 - ✤ Temperature range: ambient to 1700 °C
 - * Control of temperature ramps, soaks, and gas switching during pyrolysis
- Protocols and equipment are in place for TGA, MS, and FTIR evaluation of the pyrolysis process

Technical Accomplishments/Progress

- Established membrane synthesis capability through the proposed processing route with selected materials.
 - A membrane fixture for high temperature (ambient 800 °C) permeation testing of ceramic membrane films has been designed and constructed
 - Single gas and multi-gas permeation test rigs are in place for membrane permselectivity evaluation
 - A membrane fixture for high temperature above 800 °C has been designed and is being fabricated.

Experimental - FTIR

Monitor the decay in reactive functionalities and appearance of new functionalities via the change in the appropriate absorbance peaks over time

Excitation Source

Horizontal Orientation ♦ Increased Control Repeatability

IR Source

Large Scale Photopolymerization for Membrane Fabrication

1000W Arc Lamp Optical Train

Controlled Atmosphere Chamber

Future Work

- Remainder of FY 2004
 - Continue initial evaluations of pre-ceramic polymer thin film properties as a function of comonomer concentration on a limited set of precursors.
 - Perform initial evaluations on amorphous ceramic thin film material properties as a function of pre-ceramic polymer properties and pyrolysis conditions
 - Amorphous Ceramic Membrane Production & Testing
- Remainder of FY 2004 FY05 (Funding Dependent)
 - Subtask 1b: Implementation of a full factorial experimental design to elucidate the factors that most significantly impact the permselectivity of the final membrane product

Department of Energy DOE / EERE Hydrogen Production & Delivery Los Alamos National Laboratory

Los Alamos National Laboratory is operated by the University of California for the United States DOE under Contract W-7405-ENG-36. This document has been designated LA-UR-04-2805.

