Water-Gas Shift Membrane Reactor Studies

Richard Killmeyer and Bret Howard US DOE, NETL

Michael Ciocco and Bryan Morreale NETL Site Support Contractors, Parsons Project Services

Prof. Robert Enick and Felipe Bustamante NETL Research Associates, University of Pittsburgh

May 25, 2004

National Energy Technology Laboratory Office of Science & Technology Fuels and Process Chemistry Division

H₂ Membrane Reactor Concept

Pure Hydrogen *WGS Reaction: CO + H₂O ↔ CO₂ + H₂ *High-T for favorable kinetics *Membrane removes H₂ to "shift" unfavorable equilibrium to produce more H₂

Project Rationale

- Designing WGS membrane reactors requires the consideration of reaction kinetics and mass transport phenomena
 - Forward and Reverse Water-Gas Shift Kinetics
 - Catalytic Effect of Reactor Materials, Membrane Materials
 - Need for Heterogeneous Catalysis?
 - Hydrogen Flux and Selectivity Through Membrane
 - Durability of Membrane in Extreme Environments

Lab-scale approach

- Address scientific issues using mainly thick (i.e. 10's of microns), easy-to-manufacture membranes of precise composition
- Incorporate the optimal alloy composition into membrane reactors of various geometries that have high flux with a highly permeable support

Objectives

- Evaluate water-gas shift (WGS) reaction kinetics and membrane flux using industrial gas mixtures and conditions
- Test the feasibility of enhancing the WGS <u>at high</u> <u>temperature without added catalyst particles</u> by using a membrane reactor
- Determine the catalytic effect of metal shell materials (e.g. Inconel) and membrane surfaces (e.g. Pd) on the WGS reaction

Budget

- Funding determined yearly thru submission of Annual Operating Plan proposals to EERE
- FY04 Funding = \$200k
- EERE funding is 50% contribution to overall project; the other 50% is from FE

Project Timeline

Phase I – Hi-T, Hi-P WGS Reaction Kinetics

- 1. Complete reverse WGS reaction kinetics study
- 2. Complete forward WGS reaction kinetics study
- 3. Determine catalytic effects of membrane/reactor materials

• Phase II – Membrane Reactor Development

- 4. Fabricate different Pd membrane reactor prototypes
- 5. Determine feasibility of Pd membrane reactor prototypes
- Phase III WGS Membrane Reactor Testing
 - 6. Complete baseline testing of Pd-Cu membrane reactor
 - 7. Complete validation testing of optimized WGS MR system
 - 8. Operate WGS MR in presence of contaminants (e.g. H_2S)

Technical Barriers and Targets

- Barrier A: Fuel Processor Capital Costs—specifically single-step shift w/integrated membrane technology
 - <u>Related 2005 Targets:</u> Purification at a Cost of $0.11/kg H_2$ and H₂ Efficiency of 82%
- Barrier AB: H₂ Separation & Purification—specifically membrane separation with the shift reaction in one unit operation

<u>Related 2005 Targets:</u> Flux Rate of 100 scfh/ft²,
 Cost of \$100-150/ft², Durability of 50,000 hours,
 Operating Temperature of 300-600°C, and
 Parasitic Power of 3.0 kWh/1000 scfh

NETL Hydrogen Separation Facilities

- 3 H₂ Membrane Test Units
- Constructed FY99 to FY02
- Temperatures to 900°C
- Pressures to 400 psi
- Disk & tubular membranes
- 1/4" to 1/2" membranes
- Feed gas flexibility
- Membrane separation & reactor configurations
- "Clean" and "sulfur-laden" gas feedstocks
- Online analysis of products by GC

Project Safety

- <u>Safety vulnerability</u> is addressed thru NETL's Safety Analysis & Review System (SARS). This process identifies, analyzes, minimizes all ES&H hazards. It ensures that all projects have a SARS Permit before operations begin.
- <u>Management of changes</u> is also addressed for any project or facility modifications thru the NETL SARS process.
- All H₂-related reactors are contained in purge vessels thru which an inert gas (N₂) is continually streaming.
- Gas alarm systems are in place in areas where gases such as H₂, H₂S, CO, CO₂, etc. are in use.

FY04 Approach

- Conduct baseline testing of the fWGS reaction at high pressure with no catalyst in the 300-900°C range in the prototype Pd & PdCu membrane reactors.
- Re-design the PdCu membrane reactor to maximize membrane area and minimize thickness in order to enhance conversions of CO and H₂O to H₂ and CO₂.
- Determine H₂ permeance of PdCu in the presence of major gasifier components, such as CO, H₂O, CO₂.

FY04 Accomplishments

- Completed forward WGS kinetics study
 - -Gas phase kinetics
 - Correlation developed for high T, high P fWGS reaction
- Determined catalytic effect of membrane and reactor shell materials
 - Inconel example of reactor shell material
 - Pd and Pd/Cu examples of membrane materials
- Evaluated effect of CO and H2O on H₂ permeability
- Fabricated 3 types of Pd MR for trials
 - Pd flat disk in Inconel: assessment of effect of side reactions
 - Thin Pd tubes: effect of temperature, pressure, reactant ratio
- Incorporated WGS kinetics results into MR model

Forward WGS Kinetics

_Inconel walls catalyze the reaction **_Gas-phase** reaction appears to be slow

 $(x_{CO})_0 = 0.72, (x_{H2O})_0 = 0.28, (x_{CO2})_0 = (x_{H2})_0, \tau \sim 0.5 - 1 \text{ s}$

CO not a Poison for Pd Membranes at Hi-T

Physical, transient drop due to C deposition-permeability restored H_2O doesn't exert any effect on H_2 permeation (not shown)

T = 900°C, Pretentate= 220 psig, Ppermeate= 5 psig, $H_2/CO/He$ (~33% ea)

Inconel Enhances Kinetics & Pd Removes H₂

_Good synergy between Inconel & Pd _Side reactions on Inconel are significant

Pd or PdCu membrane surfaces enhance the WGS

Exposure of the Pd to O₂ to remove C roughens the membrane
This increases surface area and enhances conversion activity,
Need to operate at conditions where C deposits do not form

SEM images of fresh (top) & oxidized (bottom) Pd packing shows increase in roughness; PdCu displays a similar behavior

WGS Membrane Reactor Prototype

1) Helix design used to optimize surfaceto-volume ratio 2) Graph shows CO conversions above equilibrium 3) In summary, WGS w/ membrane reactor yields more H2 than conventional WGSR at hi-temperature

Interactions, Collaborations, Papers

- Synetix (Johnson-Matthey) in the UK: Dr. Jim Abbott informal exchange of WGS information
- Princeton Environmental Institute: Dr. Tom Kreutz membrane reactor systems analyses
- Collaborations with ultra-thin Pd/Cu membrane developers: Dr. Doug Way (Pd/Cu/porous ceramic), Dr. Robert Buxbaum (Pd/Cu/dense metals), and Dr. Ed Ma (Pd/Cu/porous SS)
- F. Bustamante et al., "Hi-T, Hi-P WGS Reaction in a Membrane Reactor," AIChE Mtg., San Francisco, 11/03
- R. Enick et al., "Towards the Development of Robust Water-Gas Shift Reactors," ACS Mtg., New York, 8/03
- F. Bustamante et al., "Hi-T Kinetics of the Homogeneous rWGS Reaction," AIChE Journal, 05/04
- M. Ciocco et al., "Conducting the Hi-T&P WGSR in a Pd Membrane Reactor," Coal Util. Conf., Clearwater FL, 04/04

Responses to Reviewers' Comments Last Year

- <u>Summary Comment</u> "emphasize feasibility of hitemp WGS under realistic operating conditions"
- <u>Response</u> project focus has shifted from kinetics studies to actual WGS membrane reactor testing using syngas components, reactor materials, high T&P, novel reactor designs
- No weaknesses specified in reviewers comments

Future Plans

• FY04

- Conduct baseline testing of Pd membrane reactor (MR) to determine feasibility of prototype design
- Fabricate Pd-Cu MR based on results of Pd testing and begin baseline testing

• FY05

- Complete baseline testing of Pd-Cu MR
- Determine effect of syngas components and impurities (S, CI, NH3, etc.) on WGS MR
- Complete initial validation tests under gasification conditions

