High Density Hydrogen Storage System Demonstration Using NaAlH<sub>4</sub> Complex Compound Hydrides

**D.L.** Anton

**D.A.** Mosher

S.M. Opalka

**United Technologies Research Center** 

E. Hartford, CT

F.E. Lynch

HCI, Inc. Littleton, CO

Merit Review Philadelphia, PA May 24-27, 2004

**United Technologies Research Center** 

C. Qiu

G.B. Olsen

QuesTek, LLC

Evanston, IL

This presentation does not contain any proprietary or confidential information

Rev. B



To assist DoE in the development of an in-situ rechargeable hydrogen storage media and systems technologies for automotive transportation applications.

- Develop an engineering data base for catalyzed NaAlH<sub>4</sub> materials.
- Develop an understanding of the safety testing protocols and engineering design requirements for utilizing alanate materials.
- Develop, scale-up, build, bench demonstrate an *in-situ* rechargeable 1 kg system and deliver a 5 kg H<sub>2</sub> capacity hydrogen storage system suitable for operation of a PEMFC powered mid-size auto application based.

**Budget** 

Funding: \$2.45M (28% cost share)

**FY '04:** \$939,000

**Duration:** 4 years

Start: May 1, 2002

# **Technical Barrier & Targets**

|                  | Metric                    | Units                     | 2005 DoE<br>Goal | 2010 DoE<br>Goal | UTRC<br>GO/NoGo |                   | Metric                                         | Units                  | 2005 DoE<br>Goal        | 2010 DoE<br>Goal       | UTRC<br>GO/NoGo |
|------------------|---------------------------|---------------------------|------------------|------------------|-----------------|-------------------|------------------------------------------------|------------------------|-------------------------|------------------------|-----------------|
|                  | Capacity                  | kg                        |                  | 5                |                 |                   | Max. H <sub>2</sub><br>Deli <i>v</i> ery Temp. | °C                     | 100                     |                        |                 |
| torage<br>risity | Gravimetric               | kWh/kg                    | 1.5              | 2                | 1.00            | beivery           | Min. H <sub>2</sub><br>Delivery Temp.          | °C                     | -20                     | -30                    |                 |
| о<br>Н<br>С      | Volumetric                | kWh/l                     | 1.2              | 1.5              | 0.55            | 日                 | Min. Full Flow                                 | g H <sub>2</sub> /sec. | 3.0                     | 4.0                    | 0.30            |
|                  | Total life cycle          | \$(03)/kW/b               | 6.00             | 4 00             |                 | Narog             | FC<br>Min. Pressure                            | kPa/bar                | 250/2.5                 | 250/2.5                |                 |
| Cost             | miles)                    | \$(00)/KW/                | 0.00             | 4.00             |                 |                   | ICE<br>Min. Pressure                           | kPa/bar                | 1000/10                 | 3500/35                |                 |
|                  | ruei<br>(gasoline         | \$(01)                    | 3.0              | 1.3              |                 | *****             | Purity                                         | % (dry)                | 99.9                    | 99.9                   |                 |
|                  | equivilent)               | <i><i><i>(())</i></i></i> |                  |                  |                 | ë t               | 0-90%<br>90-0%                                 | sec.                   | 0.5                     | 0.5                    |                 |
|                  | Cost (Ref.                | \$(03)/kgH <sub>2</sub>   | NA               | 1.5              |                 | ransier<br>espons | start to full flow<br>@20°C                    | sec.                   | 4.0                     | 0.5                    |                 |
| Q                |                           | 0                         |                  |                  |                 | ⊢ œ               | start to full flow<br>@-20°C                   | sec.                   | 8.0                     | 4.0                    |                 |
| iting<br>atur    | Min.                      | °C                        | 0                | -30              |                 |                   | Refueling Rate                                 | kg H₂/min.             | 0.5                     | 1.5                    | 0.30            |
| Opera<br>Temper  | Max.                      | °C                        | 50               | 50               |                 |                   | Loss of Useable $H_2$                          | g/hr kg $H_2$          | 1.0                     | 0.1                    |                 |
| le Life          | Cycle Life<br>(0.25-100%) | N                         | 500              | 1000             |                 |                   | Permeation &<br>Leakage                        | scc/hr                 | Federal enc<br>safety s | closed-area<br>tandard |                 |
| Š                | Mean                      | %                         | N/A              | 90               |                 |                   |                                                |                        |                         |                        |                 |
|                  | Connuence                 | 70                        | N/A              | 90               |                 |                   | Toxicity                                       |                        | Meets or<br>applicable  | exceeds<br>standards   |                 |
|                  |                           |                           |                  |                  |                 |                   | Safety                                         |                        | Meets or<br>applicable  | exceeds<br>standards   |                 |

# Approach

Design a low pressure hydrogen storage system initially utilizing catalyzed NaAIH<sub>4</sub>, but capable of being altered to use "*any*" reversible chemical hydride having the higher gravimetric and/or volumetric hydrogen storage densities with minimal redesign. Characterize NaAIH<sub>4</sub> both empirically and analytically to obtain the highest performance composition.

This is a challenge to the hydrogen storage community to develop a material superior to NaAlH<sub>4</sub> in (i) gravimetric capacity (ii) charging rate at  $\leq$ 100bar & (iii) discharge rate at  $\leq$ 90°C.



•Quantification of the safety risks associated with utilization of catalyzed NaAlH $_4$  materials.

•Identification of safety vulnerabilities and risk mitigation strategies in:

- (i) testing laboratory quantities of NaAlH<sub>4</sub>,
- (ii) large scale production and handling of catalyzed NaAlH4 materials,
- (iii) building and loading of a system utilizing up to 25 kg of catalyzed NaAlH4, and
- (iv) building a testing system for evaluating the performance of an alanate hydrogen storage system with a 1 kg H<sub>2</sub> capacity.
- Organizing IEA Task XVII break out session on alanate safety procedures & lessons learned.

# **Timeline**

|     |                                | 2002 |          |   | 202 |    |    | 204 |    |    | 205 |    |            | 200         |          |    |    |            |    |    |        |            |
|-----|--------------------------------|------|----------|---|-----|----|----|-----|----|----|-----|----|------------|-------------|----------|----|----|------------|----|----|--------|------------|
| D   | Faak Rama                      | 01   | 02       | 0 | 19  | Q4 | 01 | 02  | 02 | Q4 | 0   | 02 | 60         | Q4          | 01       | 02 | 80 | Q4         | 01 | 02 | 60     | 04         |
| '   | Media Characterization         |      | V        |   |     |    |    |     |    |    |     | 7  |            |             |          |    |    |            |    |    |        |            |
| 2   | Safety Analysis                |      | 4        |   |     |    |    | - 4 | Þ  |    |     |    |            |             |          |    |    |            |    |    |        |            |
| 1   | NaAIH4 Thermodynamic Modeling  |      | 4        |   |     |    |    |     |    |    |     | ۲  |            |             |          |    |    |            |    |    |        |            |
| 12  | Media Characterization         |      | 4        |   |     |    |    |     |    |    | -   | Ð, |            |             |          |    |    |            |    |    |        |            |
| 2   | CCH Storage Sys. Demonstration |      | $\nabla$ |   |     |    |    |     |    |    |     |    |            |             |          |    |    |            |    |    | _      | 7          |
| 28  | 50g H2 Sub-System Evaluations  |      |          |   |     |    |    |     |    |    | :   |    |            |             |          |    |    | ۰          |    |    |        |            |
| 31  | 1Kg System Evaluation          |      | 4        |   |     |    |    |     |    |    |     |    |            | - <         | þ        |    |    |            |    |    |        |            |
| 22  | Design/Fabricate CCHSS#1       |      | ¢        |   |     |    |    |     |    |    |     | +  | ->         |             |          |    |    |            |    |    |        |            |
| 42  | CCHSS#1 Evaluation             |      |          |   |     |    |    |     |    |    |     |    | ~ <b>~</b> | $\vdash$    | >        |    |    |            |    |    |        |            |
| 43  | GO/NO GO Milestone             |      |          |   |     |    |    |     |    |    |     |    |            | <b>a</b> au |          |    |    |            |    |    |        |            |
| 48  | 5Kg System Evaluation          |      |          |   |     |    |    |     |    |    |     | 9  |            |             | :        |    |    |            | :  |    |        |            |
| ar. | Design/Fabricate CCHSS#2       |      |          |   |     |    |    |     |    |    |     |    | $\succ$    |             | :        |    |    | $\diamond$ |    |    |        |            |
| 20  | CCHSS#2 Evaluation             |      |          |   |     |    |    |     |    |    |     |    |            |             | <u>~</u> |    |    |            | :  |    | $\neg$ | >          |
|     | Ship CCHSS#2 to DoE            |      |          |   |     |    |    |     |    |    |     |    |            |             |          |    |    |            |    |    | •      | <b>9</b> 2 |
| B4  | Reporting                      |      | 4        |   |     |    |    |     |    |    | :   | -  |            |             | :        |    |    |            | :  |    | - (    |            |
|     |                                |      |          |   |     |    |    |     |    |    |     |    |            |             |          |    |    |            |    |    |        |            |

#### Phase I – Media Characterization

- Safety Analysis
- Thermodynamic Modeling
- Media Characterization
  - Kinetics
  - Cyclic Stability

Phase II – System Demonstration

- 50g H<sub>2</sub> Subsystem Evaluations
- 1 kg H<sub>2</sub> System Design/Evaluation
- 5 kg H<sub>2</sub> System Design/Evaluation
- System Modeling

Safety Analysis



**DOT/UN Doc.**, *Recommendations on the Transport of Dangerous* Goods, Manual of Tests and Criteria, 3rd Revised Ed. (1999).

Flammability Test Spontaneous Ignition **Burn** Rate

#### • Flammability •Water Contact

Immersion Surface Exposure Water Drop Water Injection

#### Dust Explosion

 $P_{max} \& (dP/Dt)_{max} (ASTME1226)$ Min. Exp. Conc.(ASTM 1515) Min. Ignition Energy (ASTM 2019) Min. Ignition Temp. (ASTM 1491)

CCH#0: 2m%TiCl<sub>3</sub> 1. Fully Charged, CCH#0-100: (NaAlH<sub>1</sub>) 2. Partially Discharged, CCH#0-33: (Na<sub>3</sub>AlH<sub>6</sub>+2Al) 3. Fully Discharged, CCH#0-0: (NaH+Al)

• Class 4.3, Packing Group II: No change from uncatalysed material. Spontaneous combustion with water, pyrophoric in air •Class St-3, Highly Explosive

# **Dust Explosion Testing**

|                         | Test M                                       | aterials                         | Reference               | Materials            |
|-------------------------|----------------------------------------------|----------------------------------|-------------------------|----------------------|
|                         | NaAlH <sub>4</sub> +<br>2% TiCl <sub>3</sub> | NaH+AI +<br>2% TiCl <sub>3</sub> | Pitt. Seam<br>Coal Dust | Lycopodium<br>Spores |
| P <sub>max</sub> bar-g  | 11.9                                         | 8.9                              | 7.3                     | 7.4                  |
| R <sub>max</sub> bar/s  | 3202                                         | 1200                             | 426                     | 511                  |
| K <sub>st</sub> bar-m/s | 869                                          | 326                              | 124                     | 139                  |
| Dust Class              | St-3                                         | St-3                             | St-1                    | St-1                 |
| MEC g/m <sup>3</sup>    | 140                                          | 90                               | 65                      | 30                   |
| MIE <i>mJ</i>           | <7                                           | <7                               | 110                     | 17                   |
| T <sub>c</sub> °C       | 137.5                                        | 137.5                            | 584                     | 430                  |

 $P_{max}$  = maximum explosion pressure,  $R_{max}$  = pressure rise maximum,  $K_{st}$  = maximum scaled rate of pressure rise, MEC = minimum explosive concentration, MEI = minimum spark ignition energy,  $T_c$  = minimum dust cloud ignition temperature

# **Calculated Dissociation Pressures**





## Materials

### **Starting Materials**

- Commercial purity NaAlH<sub>4</sub>
- High purity H<sub>2</sub> (99.995 pure) Primary impurities N<sub>2</sub>, O<sub>2</sub>, CH<sub>4</sub>, CO<sub>2</sub>, CO, H<sub>2</sub>O

## Compositions

- 6% TiCl<sub>3</sub>
- 4% TiCl<sub>3</sub>
- New catalyst/method method
- 4% CeCl<sub>3</sub>
- 6% TiF<sub>3</sub>

## Testing Isobaric

## Desorption

- 120°C/68bar/16hrs
- T = 70, 80, 90, 100, 110 & 120°C
- P = 1 bar

## Isothermal

## Absorption

- 150°C/vac/24hrs
- T = 120°C
- P = 50, 68, 90, 110 bar United Technologies Research Center =

#### Isobaric Absorption

- 150°C/vac/24hrs
- T = 80, 100, 120 & 140°C
- P = 68 bar

# **Charging Kinetics**



**Discharge Kinetics** 



# **Charging Capacity**



•6% TiF<sub>3</sub> and TiCl<sub>3</sub> comparable
•Pathway identified to increase NaAlH<sub>4</sub> capacity to ~3.7% or greater if it can be made effective in Na<sub>3</sub>AlH<sub>6</sub> desorption.

# **Pressure Dependence**

Isochronal evaluations of capacity used as quantification measure
4% MCl<sub>3</sub> have highest pressure dependence (lower P to max capacity).
New Pathway identified to increase low pressure NaAlH<sub>4</sub> capacity



# **Cyclic Stability** Hydrogen gas impurity effects

Commercial Purity NaAlH<sub>4</sub> 50g NaAlH<sub>4</sub> + 6m%TiCl<sub>3</sub> Com. Purity Gas: 99.95% H<sub>2</sub> (typical contaminants: <20ppm  $N_2$ ,  $O_2$ ,  $H_2O$ , CO,  $CO_2$  &  $CH_4$ )

•Relatively low capacities are artifacts of isothermal testing constraints.

10-50% decrease in capacity attributed to H<sub>2</sub> gas impurities.
<u>No oxides/hydroxides identified</u> by XRD after cycling.

|                    | Pressure<br><i>(bar)</i> | Temperature<br><i>(°C)</i> | Time<br><i>(hrs)</i> |
|--------------------|--------------------------|----------------------------|----------------------|
| Charge<br>Cycle    | 100                      | 100                        | 4                    |
| Discharge<br>Cycle | 2                        | 100                        | 8                    |

Automated Equipment Limitation



# System Overview

## Conventional Metal Hydride (LaNi<sub>5</sub>) vs NaAlH<sub>4</sub>



\*\* 50% powder relative density, 4% H<sub>2</sub> media capacity



# Heat Transfer Optimization

#### **Design inputs**

- N: number of tubes
- D: tube diameter
- $\rho_{foam}$ : aluminum foam relative density

#### **Optimal points - convex hull** Tube passes = 24 Foam rel. density = 0.04 Tube OD = 0.375 in Tube passes = 24 Foam rel. density = 0.04 Tube OD = 0.375 in 0.65 0.7Foam densitv Tube passes Tube diameter 2.5 0.6 gravimetric efficiency Design variable multipliers 0.5 900 s = 15 min optimum1.5 System o Input ranges: N = 24 $(1/3*0.04) < \rho_{foam} < (3*0.04)$ 0.5 0.2 (1/3\*0.375") < D < (3\*0.375")0.15<sup>L</sup> 500 1000 1500 2000 2500 3500 0 500 1000 1500 2000 2500 3000 3500 3000 t<sub>refuel</sub>, [s] t<sub>refuel</sub>, [s]

Optimal design: 24 tubes of 3/8" diameter with 4% dense aluminum foam

**United Technologies Research Center** 

#### **Performance outputs:**

- $\rho_{\mathit{grav}}$  : gravimetric efficiency
- $t_{refuel}$ : refueling time

#### Design variables along convex hull



# Volumetric Density



- Powder packing density
- Gravimetric density

# **Composite Vessel**

### **Specifications:**

- 250°C: high temperature resin
- 100 atm working pressure
- 40" length, 9.5" inner diameter
- Stainless steel liner
- Parr Instruments stainless steel lid for easy removal and inspection after evaluation.
- Designed to meet ASME section 10 pressure vessel code
- FEM analysis performed to insure safety factor at design pressure. SCC Spencer Composites Corporation

#### Vendor:

Custom design & fabrication

Specialty production

•Full open, closed one end & high temperature design and fabrication experience

•Supplier to aerospace and petroleum industries

Safety is top concern in all designs and evaluations







Flange - composite interface



# 1 kg System Testing

# Testing will utilize UTRC's Combustion research facility

- 18" thick reinforced concrete walls and ceiling
- Sheet metal directed blow-out back wall
- Secondary pressure vessel within test cell
- External control & monitor station







## Hosted DoE Hydrogen Safety Review Committee on May 5, 2004.

Safety is top priority in testing of first prototype.

# System Level Modeling

#### gPROMS

- Steady state modeling
- Detailed reactor simulation
   DYMOLA
- Dynamic system modeling
- Control logic implementation



#### **FPS/Cell Stack Integration**

#### **Status**

- -System models constructed and base line performance quantified.
- -System integration concepts and preliminary models have been generated.
- Results are considered sensitive IP.

# System Projections

optimized NaAlH<sub>4</sub> (0.5wt% improvement)

New material discovery or full NaAIH4 (1wt% improvement)

|                                    | Symbol                             | units                            | CCHSS#1                 | CCHSS#1.1                   | Ģ   | CHSS#2        | DoE                    | DoE                                         | UTRC                 |
|------------------------------------|------------------------------------|----------------------------------|-------------------------|-----------------------------|-----|---------------|------------------------|---------------------------------------------|----------------------|
|                                    | Media                              |                                  | 4m %TiF <sub>3</sub>    | improved NaAlH <sub>4</sub> | 5/5 | % media - '05 | 2005 Goal              | 2010 Goal                                   | 2004 Goal            |
| Media Density                      | ρ <sup>m</sup>                     | g/cm³                            | 1.28                    | 1.28                        | /   | 1.28          |                        |                                             |                      |
| Media Gravimetric Density          | ρ <sup>m</sup> g                   | wt%                              | 4.0% 🛁                  | 4.5%                        | ♣   | 5.5%          |                        |                                             |                      |
| Media Volumetric Density           | ρ <sup>m</sup> v                   | kgH <sub>2</sub> /m <sup>3</sup> | 51.2                    | 57.6                        |     | 70.4          |                        |                                             |                      |
| System Gravimetric Density         | ρ <sup>s</sup> g                   | wt%                              | 2.4%                    | 2.9%                        |     | 4.4%          | 4.5%                   | 6.0%                                        | 3.0%                 |
| "                                  | ρ <sup>s</sup> g                   | kWh/kg                           | 0.8                     | 1.0                         |     | 1.5           | 1.50                   | 2.00                                        | 1.00                 |
| System Volumetric Density          | ρ <sup>s</sup> v                   | kgH₂/m³                          | 15.4                    | 20.6                        |     | 35.9          | 36.0                   | 45.0                                        | 16.5                 |
| "                                  | ρ <sup>s</sup> v                   | kWh/l                            | 0.51                    | 0.69                        |     | 1.20          | 1.20                   | 1.50                                        | 0.55                 |
| Media Charging Rate                | r <sup>m</sup> c                   | wt%/hr                           | 14.3                    | 16.2                        |     | 33.0          |                        |                                             |                      |
| Media Discharging Rate             | r <sup>m</sup> D                   | wt%/hr                           | 0.9                     | 1.1                         |     | 12.0          |                        |                                             |                      |
| System Charging Rate               | r <sup>s</sup> c                   | wt%/hr                           | 14.3                    | 16.2                        |     | 33.0          |                        |                                             |                      |
| System Discharging Rate            | r <sup>s</sup> D                   | wt%/hr                           | 0.9                     | 1.1                         |     | 12.0          |                        |                                             |                      |
| Gravimetric Engineering Efficeincy | E                                  |                                  | 0.6 📩                   | 0.65                        | ➡   | 0.8           |                        |                                             |                      |
| Volumetric Engineering Efficiency  | E                                  |                                  | 0.5 / 🔫                 | 0.55                        | -   | 0.68          |                        |                                             |                      |
| Powder Packing density             | ρ <sup>m</sup> <sub>p</sub>        |                                  | 0.6/                    | 0.65                        |     | 0.75          |                        |                                             |                      |
| Heat Transfer Coefficient          | К <sup>S</sup> f                   |                                  | 1.0 / /                 | 1.0                         | 11  | 1.0           |                        |                                             |                      |
| System Capacity                    | C <sup>s</sup>                     | kgH <sub>2</sub>                 | 5/0 / /                 | 5.0                         |     | 5.0           | 5                      | 5                                           | 5                    |
| System Charging Rate               | R <sup>s</sup> <sub>C</sub>        | kgH₂/hr                          | 1/7.9                   | 18.0                        |     | 30.0          | 30                     | 90                                          | 18                   |
| System Discharging Rate            | <b>R</b> <sup>s</sup> <sub>D</sub> | kgH₂/hr                          | /1./8/                  | 1.22                        |     | 10.91         | 10.8                   | 14.4                                        | 1.2                  |
| Media Mass                         | m <sup>m</sup>                     | kg media                         | / 125,0                 | 111.1                       |     | 90.9          |                        |                                             |                      |
| System Mass                        | m <sup>s</sup>                     | kg sys.                          | / 208.3                 | 170.9                       |     | 113.6         |                        |                                             |                      |
| Media Volume                       | v <sup>m</sup>                     | т <sup>3</sup>                   | / / 0/10                | 0.09                        |     | 0.07          |                        |                                             |                      |
| System Volume                      | vs                                 | т <sup>з</sup>                   | / / <mark>0</mark> .195 | 0.158                       |     | <b>0</b> .104 |                        |                                             |                      |
| System Volume                      | v <sup>s</sup>                     | gal.                             | / /51.6                 | 41.7                        |     | 27.6          |                        |                                             |                      |
|                                    | media<br>system                    |                                  |                         |                             |     |               | new desig<br>system ap | n <i>(5 pt savir</i><br>proach <i>(10 j</i> | ngs)<br>pt. savings) |
| improved HX design (5 pt savi      | ngs)                               | / / ,                            | /                       |                             |     | Ц             | new fill me            | ethod (10 pt                                | savings)             |
| improved fill method (5 pt savi    | ngs) 🔜                             | /                                |                         |                             |     |               |                        |                                             |                      |

#### Hydrogen Storage System Predicted Performance Metrics

# **Going Forward Plan**

- Safety Analysis
- Atomistic/Thermodynamic Modeling
- 50g H<sub>2</sub> Prototype System
- Media Kinetic Characterization
- Media Kinetic Modeling
- Heat/Mass Transfer Analysis
- High Temp. Composite Tank
   Development
- 1kg H<sub>2</sub> Prototype/Evaluation
- <u>5kg H<sub>2</sub> Prototype/Evaluation</u>
- 5kg Prototype Delivery

### 1kgH<sub>2</sub> CCHSS#1.1

System Design New filling & HX method New NaAlH<sub>4</sub> catalyst method Higher capacity within P & T

## 1kgH<sub>2</sub> CCHSS#2

System Design 2-end semi-closed composite tank New mfg. method New filling method Metalized polymer liner System Modeling Improved NaAIH<sub>4</sub> catalysts Lower charging pressure

# **Partners**







ALBEMARLE

#### UNIVERSITY OF HAWAT'T



**IIII**SPENCER**IIII** COMPOSITES CORPORATION

- UTPower: Automotive PEMFC requirements & system models.
- Hydrogen Components Inc.: F.L. Lynch safety testing, system design and fabrication.
- QuesTek: Prof. G. Olsen & Dr. C. Qiu thermodynamic modeling.
  - Albemarle: Dr. J. Powers NaAlH<sub>4</sub> properties, handling, and impurity content effects.
    - U. Hawaii: Prof. C. Jensen Consultation on NaAIH<sub>4</sub> properties and capabilities.
  - **IFE: Dr. O.M. Lovvik Atomistic simulations.**
- Spencer Composites, LLC: B. Spencer High temperature & pressure graphite reinforced composite tank design and fabrication.

# **Previous Year's Comments**

## Comment

"Weakness is that this will not meet low goals."

We are designing and building the best possible hydrogen storage system possible with existing materials to learn fundamental concepts in utilizing alanate materials and in anticipation of future materials invention.

## Comment

"Maintain sufficient latitude in the design to accommodate other reversible H<sub>2</sub> sorbents ..."

This is the stated strategy.

# **Future Work**

- Complete fabrication of 1 kg H<sub>2</sub> system, CCHSS#1.
- Complete evaluation of CCHSS#1 under charging, discharging and conditions.
- Tear down CCHSS#1 to evaluate system deterioration.
- Design/evaluate advanced HX concepts for integration into CCHSS#1.1
- Design/evaluate new composite fabrication technologies into CCHSS#2

# Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

#### D.L. Anton, S.M. Opalka

#### X. Tang & D.A. Mosher

United Technologies Research Center E. Hartford, CT

| R. Zidan  | B. Hauback       |
|-----------|------------------|
| T. Motyka | H. Brinks        |
| SRTC      | O.M. Lovvik      |
| Aiken, SC | IFE              |
|           | Kjeller, Norway  |
|           | Merit Review     |
|           | Philadelphia, PA |
|           | May 24-27, 2004  |

#### J. Strickler

F.-J. (Robert) Wu

#### J.E. Boone

Albemarle Corp. Baton Rough, LA

Rev. A

**United Technologies Research Center** 

This presentation does not contain any proprietary or confidential information

# **Objective**

To assist DoE in the development of **new complex hydride compounds capable of reversibly storing hydrogen to a capacity of** <u>></u>**7.5 wt %** and regeneration for 500 cycles with 100 % recovery.

## Approach

**Discover new reversible high hydrogen content complex hydride compounds,**  $Na_y M^{+i}{}_x (AIH_4)_{y+ix}$ , in the quaternary phase space between sodium hydride (NaH), alane (AIH<sub>3</sub>), transition metal or rare earth (M) hydrides (MH<sub>z</sub>, where z= 1-3) and molecular hydrogen (H<sub>2</sub>) utilizing Solid State Processing (SSP), Molten State Processing (MSP) and Solution Based Processing (SBP).

$$Na_y M^{+i}_x (AIH_4)_{y+ix}$$



**Total Funding:** \$2.9M (27% cost share)

**FY '04:** \$569,000

SRTC CRADA: \$150,000

**Duration:** 3 years

Start:

Signed: March 17, 2004 UTRC anticipatory: December 1, 2003

# **Technical Barrier & Targets**

|                     | Metric                       | Units                   | 2005 DoE<br>Goal | 2010 DoE<br>Goal | UTRC<br>GO/NoGo |                     | Metric                                | Units                  | 2005 DoE<br>Goal        | 2010 DoE<br>Goal       | UTRC<br>GO/NoGo |
|---------------------|------------------------------|-------------------------|------------------|------------------|-----------------|---------------------|---------------------------------------|------------------------|-------------------------|------------------------|-----------------|
|                     | Capacity                     | kg                      |                  | 5                |                 |                     | Max. H <sub>2</sub><br>Delivery Temp. | °C                     | 100                     |                        |                 |
| ge<br>Ze            | Gravimetric                  | kW/b/ka                 | 15               | 2                | 2.00            | belivery            | Min. H <sub>2</sub><br>Delivery Temp. | °C                     | -20                     | -30                    |                 |
| H₂ Stora<br>Densit∖ | Clamitotilo                  | K VV IV KG              | 1.5              | 2                | 2.00            | ي<br>لا             | Min. Full Flow                        | g H <sub>2</sub> /sec. | 3.0                     | 4.0                    |                 |
|                     | Volumetric                   | kWh/l                   | 1.2              | 1.5              | Ţ               | ly droge            | FC<br>Min. Pressure                   | kPa/bar                | 250/2.5                 | 250/2.5                |                 |
| _                   | Total life cycle             |                         |                  |                  | /               | ±                   | ICE<br>Min. Pressure                  | kPa/bar                | 1000/10                 | 3500/35                |                 |
|                     | (15 yr/150k                  | \$(03)/kWh              | 6.00             | 4.00             | /               |                     | Purity                                | % (dry)                | 99.9                    | 99.9                   |                 |
| Cost                | miles)                       |                         |                  |                  | /               | t ä                 | 0-90%<br>90-0%                        | sec.                   | 0.5                     | 0.5                    |                 |
|                     | (gasoline                    | \$(01)                  | 3.0              | 1.3              |                 | Transier<br>Respons | start to full flow<br>@20°C           | sec.                   | 4.0                     | 0.5                    |                 |
| •                   | equivilent)                  |                         |                  |                  |                 | ΓŒ                  | start to full flow                    | sec.                   | 8.0                     | 4.0                    |                 |
|                     | Marginal Fuel<br>Cost (Ref.  | \$(03)/kgH <sub>2</sub> |                  | 1.5              |                 |                     | @-20°C                                | ka H /min              | 0.5                     | 1 5                    |                 |
|                     |                              |                         | NA               |                  |                 |                     |                                       | ку п <sub>2</sub> /пш. | 0.5                     | 1.5                    |                 |
|                     | \$1/kWh for H <sub>2</sub> ) |                         |                  |                  |                 |                     | H <sub>2</sub>                        | $g/hr kg H_2$          | 1.0                     | 0.1                    |                 |
| rating<br>erature   | Min.                         | °C                      | 0                | -30              |                 |                     | Permeation &<br>Leakage               | scc/hr                 | Federal end<br>safety s | closed-area<br>tandard |                 |
| Oper<br>Tempe       | Max.                         | °C                      | 50               | 50               |                 |                     | Toxicity                              |                        | Meets or<br>applicable  | exceeds<br>standards   |                 |
| Life                | Cycle Life<br>(0.25-100%)    | N                       | 500              | 1/000            |                 |                     |                                       |                        |                         |                        |                 |
| <u>c</u>            | Mean                         | %                       | N/A              | 90               |                 |                     | Safety                                |                        | Meets or                | exceeds                |                 |
| Š                   | Confidence                   | %                       | N/A              | 90               |                 |                     | ,                                     |                        | applicable              | standards              |                 |
|                     | 00111001100                  | /0                      | 1.07.            | 100              |                 |                     |                                       |                        |                         |                        |                 |

7.5 wt% media is required for a 2kWh/ℓ system!

# Mixed Complex Hydride Candidates $NaAlH_4 \cdot M^{+x}(AlH_4)_x$

#### Table I



United Technologies Research Center

Table II

# **Program Outline**

- First Principals Modeling (UTRC)
  - Known Alanate Structures
  - Known NaAlH<sub>4</sub> Catalysts
  - Compound Prediction
- Synthesis
  - Solid State Proc.(UTRC)
  - Molten State Proc. (SRTC)
  - Solute Based Processing (Alb)
- Analysis
  - Structure
    - XRD (all), TRXRD (UTRC)

Na

- ND (IFE)
- Calorimetry (Alb)
- Performance
  - Van't Hoff (UTRC)
  - Kinetics (UTRC)

- Cyclic Stability (UTRC)
- Scale-Up (Alb)
- Business Analysis (UTRC, Alb)

## Initial Composition Approach



# First Principals Modeling

#### **OBJECTIVE:**

Understand the atomistic and thermodynamic principals of complex hydride materials. Use this understanding to predict new high hydrogen capacity complex hydride phases.





•Quantification of the safety risks associated with synthesis, storage and testing of high hydrogen containing compounds and their associated powders and solvents.

•Identification of safety vulnerabilities and risk mitigation strategies in:

- Synthesis, characterization and testing of laboratory quantities of AIH<sub>3</sub>, Mg(AIH<sub>4</sub>)<sub>2</sub> and similar compounds
- Scaled up to 1 kg quantities of promising compounds via most cost effective processing route.

# **Timeline**



- Modeling
- Synthesis
- Characterization
- Performance

- Stability
- Scale-Up
- Business Analysis

# **Composition Ratios**



# **Possible Sources of Cations**

Need to select 2-4 candidates for future experiments.



| Metal + Hydrides |                  |                  |  |  |  |  |  |  |
|------------------|------------------|------------------|--|--|--|--|--|--|
| NaH              | Ti               | ΑΙ               |  |  |  |  |  |  |
| NaH              | TiH <sub>2</sub> | ΑΙ               |  |  |  |  |  |  |
| NaH              | Ti               | AIH <sub>3</sub> |  |  |  |  |  |  |
| NaH              | TiH <sub>2</sub> | AIH <sub>3</sub> |  |  |  |  |  |  |

| Hydride + Chloride |                   |                   |  |  |  |  |  |
|--------------------|-------------------|-------------------|--|--|--|--|--|
| NaH                | TiH <sub>2</sub>  | AICI <sub>3</sub> |  |  |  |  |  |
| NaH                | TiCl <sub>2</sub> | AIH <sub>3</sub>  |  |  |  |  |  |

| Intermetallic |                                         |  |  |  |  |
|---------------|-----------------------------------------|--|--|--|--|
| NaH           | xTiAl <sub>3</sub> +yTi <sub>3</sub> Al |  |  |  |  |

| Organometallic |                      |                  |  |  |  |  |  |  |
|----------------|----------------------|------------------|--|--|--|--|--|--|
| NaH            | Ti(OBu) <sub>4</sub> | ΑΙ               |  |  |  |  |  |  |
| NaH            | Ti(OBu) <sub>4</sub> | AIH <sub>3</sub> |  |  |  |  |  |  |
| NaH            | Ti(OBu) <sub>4</sub> |                  |  |  |  |  |  |  |
|                |                      |                  |  |  |  |  |  |  |

| <b>United</b> | Technol | logies | Research | Center |
|---------------|---------|--------|----------|--------|
|               |         | 0      |          |        |

| Metal + Chlorides |                   |                   |
|-------------------|-------------------|-------------------|
| NaH               | TiCl <sub>2</sub> | ΑΙ                |
| NaH               | TiCl <sub>2</sub> | AICI <sub>3</sub> |
| NaH               | Ti                | AICI <sub>3</sub> |

# 2:1:1 (NaH:Ti:Al) XRD Results

- Ti concentration is significantly diminished after only hand mixing, due to absorption. Partial answer as to: *Where is the Ti?*
- TiH<sub>x</sub> strongly bound and not participatory in alanate formation.



**United Technologies Research Center** 

Molecular %



# Interactions and Collaborations

ALBEMARLE® CORPORATION





- Albemarle: Drs. J. Strickler, F.-J.
   Wu, J.E. Boone, solute based synthesis, scale-up, safety and business analysis.
- IFE: Drs. B. Hauback, H. Brinks &.
  O.M. Lovvik Neutron Diffraction,
  High Resolution XRD & Atomistic simulations.
- SRTC: R. Zidan & T. Motyka high pressure/high temperature synthesis & characterization.

# **PDC Laboratories**





#### Capability

- Bench-scale inert atmosphere process labs
- High-pressure laboratory with 1-10 gal autoclaves
- Reaction calorimeter
- NMR, Mass Spec.
- Pilot plant facilities with 50-300 gal. reactors

#### Yr 1 Plan

- Literature Review
- Define target compositions
- Develop wet chemical synthesis methods
- Perform preliminary structural characterizations
- Deliver novel ternary alanate samples for evaluation







## Capability

- High Pressure Synthesis
- Inert Atmosphere TGA, DSC
- Alanate Purification

## Yr 1 Plan

- High pressure/temperature synthesis of new complexes
- Enhancement of H<sub>2</sub> sorption kinetics.
- Thermodynamic and energetic calculations and characterization.
- Spectroscopic study of surface and bulk structures.



# **Future Work**

- Complete Na/Ti/Al, Na/Li/Al & Na/Mg/Al and initiate Na/Tm/Al quaternary phase determinations utilizing combined atomistic/thermodynamic modeling approach.
- Complete Na/Ti/AI, Na/Li/AI & Na/Mg/AI and initiate Na/Tm/AI quaternary phase determinations utilizing Solid State Processing (SSP).
- Initiate similar Molten State Processing (MSP) at SRTC.
- Initiate similar Solute Based Processing (SBP) at Albemarle.