

U.S. Department of Energy Energy Efficiency and Renewable Energy

2004 Annual DOE Hydrogen Program Review

Hydrogen Storage

Antonio Bouza Carole J. Read Sunita Satyapal JoAnn Milliken

Office of Hydrogen, Fuel Cells and Infrastructure Technologies

- State of the Art
- Barriers/Targets
- Basis for Targets
- Technology Status
- Program Planning/Coordination
- Approach
- 2003 Technical Accomplishments
- Future Plans

HONDA

The Challenge of Hydrogen Storage – Compact, Lightweight Systems Enabling Greater than 300-Mile Range.

Today's Average Vehicle 370mi-20gal

Daimler Sprinter

The State of the Art will help in the near-term, but is impractical for the long-term ---compressed and liquid hydrogen tanks:

- Will enable vehicle/infrastructure learning demonstrations & initial market penetration
- Have limited range & high energy penalty (liquid), preventing full market penetration
- Are approaching their weight & volume limits
- May have off-board storage applications

 \rightarrow DOE R&D focus is on materials-based storage technologies.

U.S. Department of Energy Energy Efficiency and Renewable Energy

Unacceptable Hydrogen Storage Option

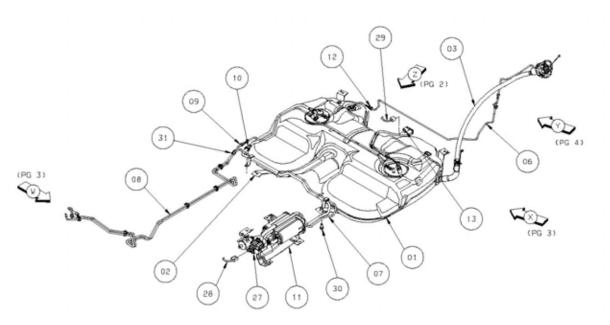
Main Barriers are Weight, Volume, Cost, and Refueling Time

What do these targets mean? For a 5-kg H₂ system...

Storage Parameter	2005		2010		2015	
Gravimetric Capacity	1.5 kWh/kg		2.0 kWh/kg		3.0 kWh/kg	
(Specific energy)	0.045 kg H ₂ /kg		0.060 kg H ₂ /kg		0.090 kg H ₂ /kg	
System Weight:		111 Kg		83 Kg		55.6 Kg
Volumetric Capacity	1.2 kWh/L		1.5 kWh/L		2.7 kWh/L	
(Energy density)	0.036 kg H _{2'}	0.036 kg H ₂ /L 0.045 kg H ₂ /L		0.081 kg H ₂ /L		
System Volume:		139 L		111 L		62 L
Storage system cost	\$6 /kWh		\$4 /kWh		\$2 /kWh	
System Cost:		\$1000		\$666		\$333
Refueling rate	.5 Kg H ₂ /min		1.5 Kg H ₂ /min		2.0 Kg H ₂ /min	
Refueling Time:		10 min		3.3 min		2.5 min

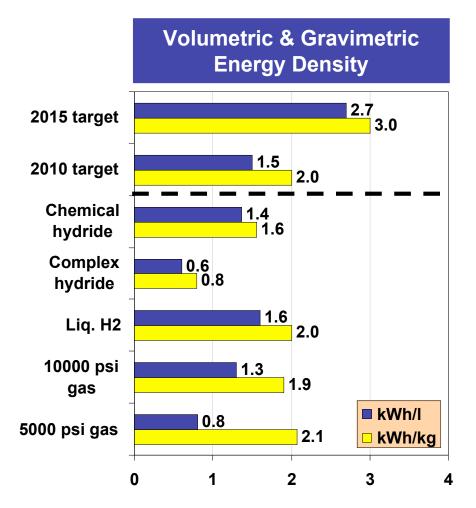
FreedomCAR On-Board Hydrogen Storage Targets are based on vehicle requirements --- NOT on what storage technologies can achieve.

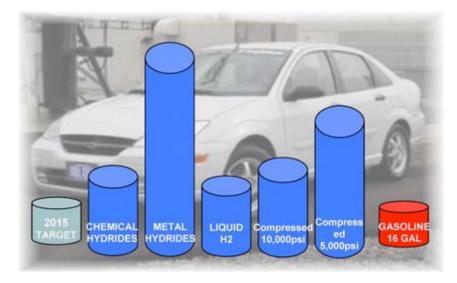
- The baseline is today's vehicles and customer expectations of them, e.g. 370 mile weighted average range
- Fuel economy gains of 2.5X 3.0X were assumed for fuel cell vehicles
- Today's fuel systems are assumed to include "conformable" components, shaped to fill in available space under the vehicle floorboard and within the chassis
- Some allowance approximately 20% can be provided in the capacity targets for fully-conformable storage systems



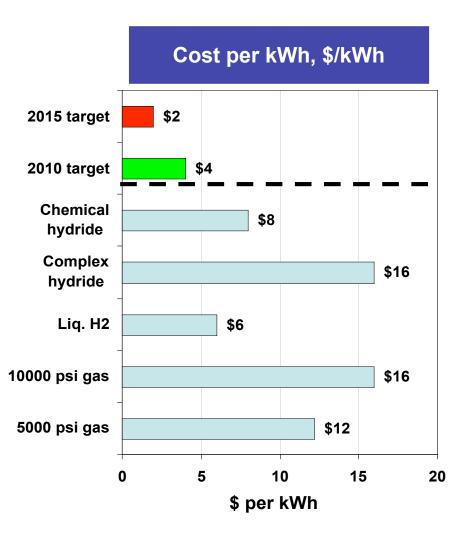
The Fuel Storage System

Storage calculations used real volumes and weights of gasoline fuel storage systems in current production vehicles, including:


- Fuel tank
- Fuel filler tubes
- Gas cap
- Hoses
- Fuel lines
- Fuel pump
- Fuel filter
- Carbon vapor canister
- Leak detection device
- Purge control solenoid
- Rollover check valve
- Tank hanger straps, clips, & other fasteners



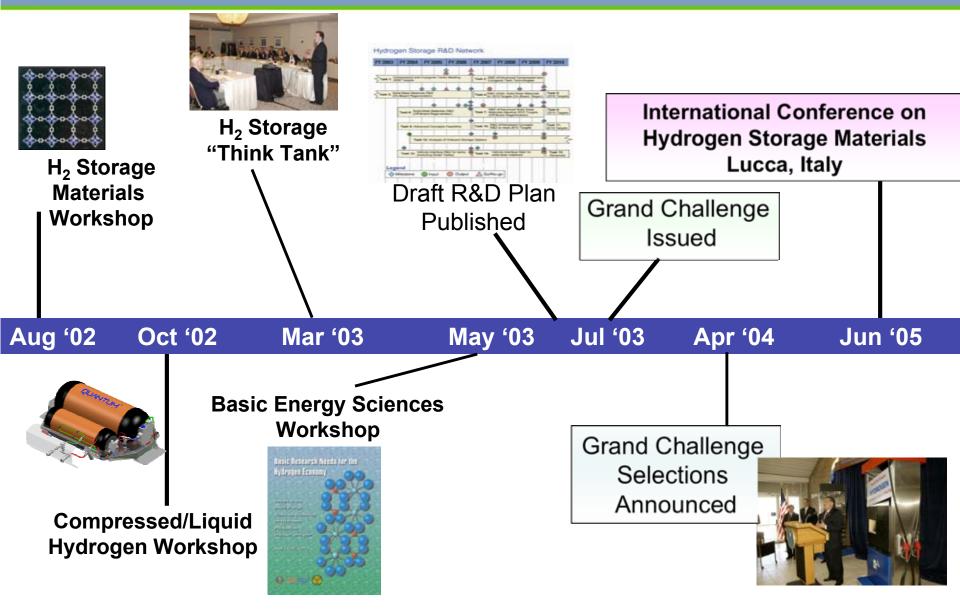
Technology Status - Capacity

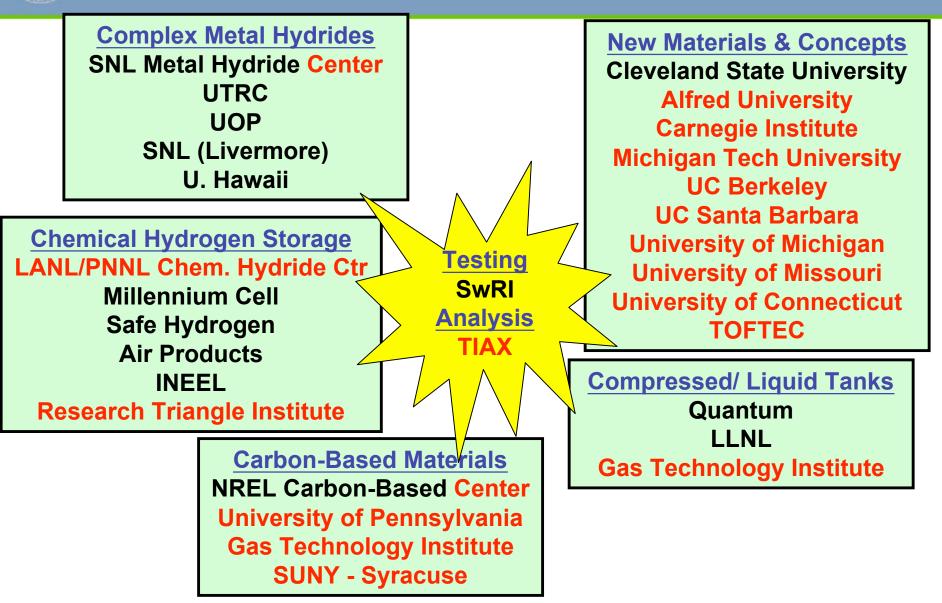

No current H₂ storage technology meets the 2015 targets.

No current H₂ storage technology meets the cost targets.

For valid comparison, storage system cost must include the cost of the "first charge" so that any "pre-conditioning," i.e. compression, liquefaction, or off-board regeneration cost is considered.

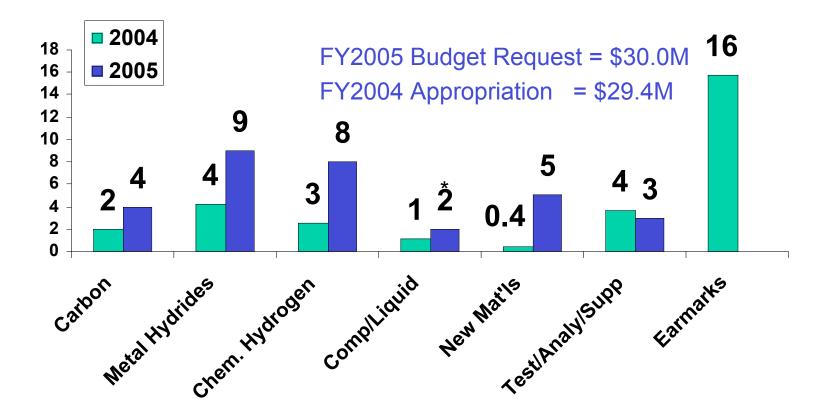
System Issues


Some improvement in system energy density may be achieved by improving the balance of plant.

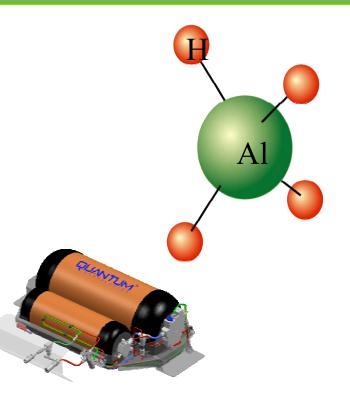

	Current System Densities	
Storage Approach	(relative to fuel)	
Compressed hydrogen	~70%	
Liquid hydrogen	~55 - 60%	
Solid state	~40 - 50%	

Greatest potential for improvement is with solid state systems.

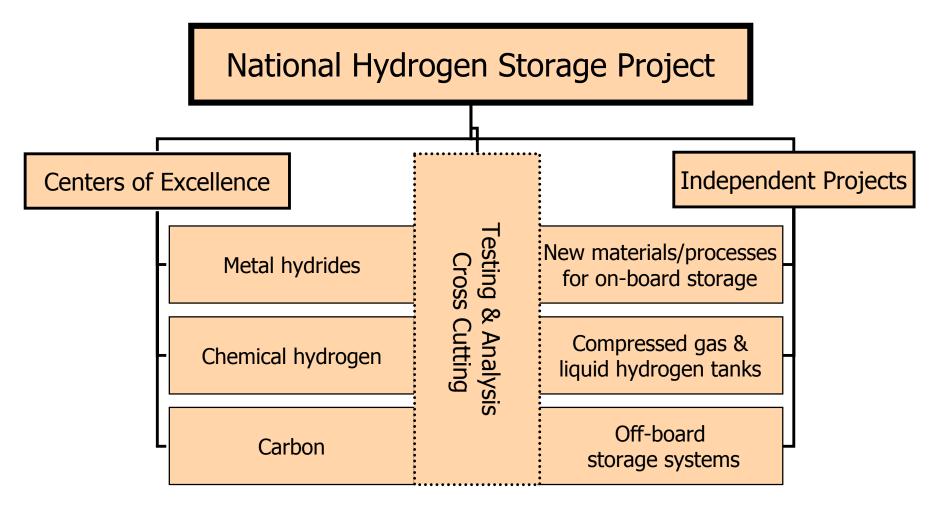
Hydrogen Storage R&D – Planning and Implementing

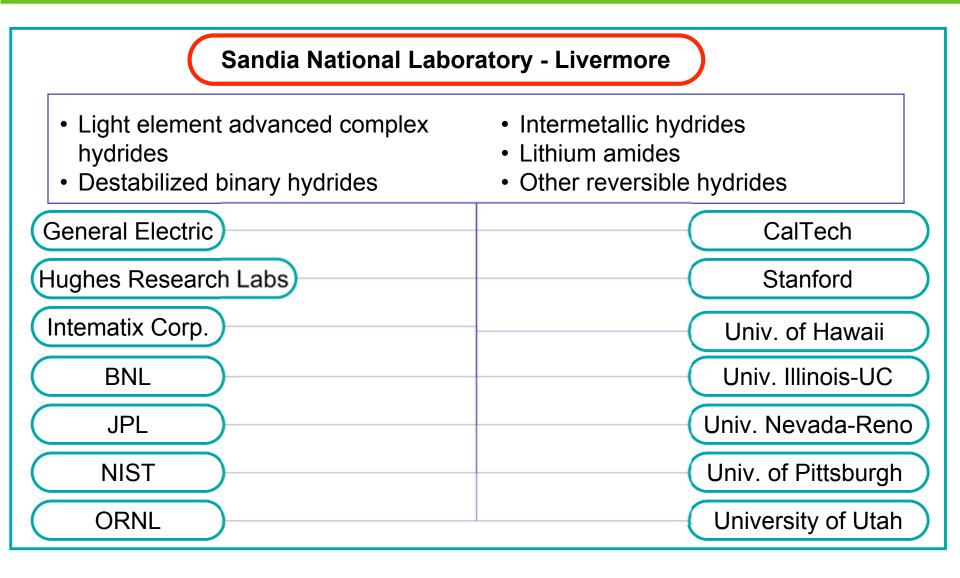


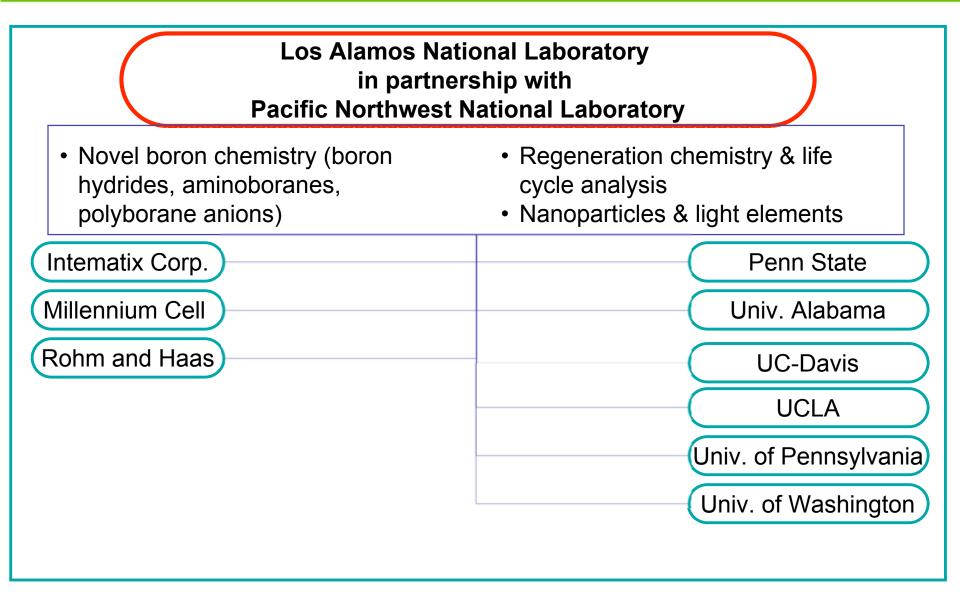
Emphasis: Centers of Excellence and new materials projects to focus on 2010 hydrogen storage goals:

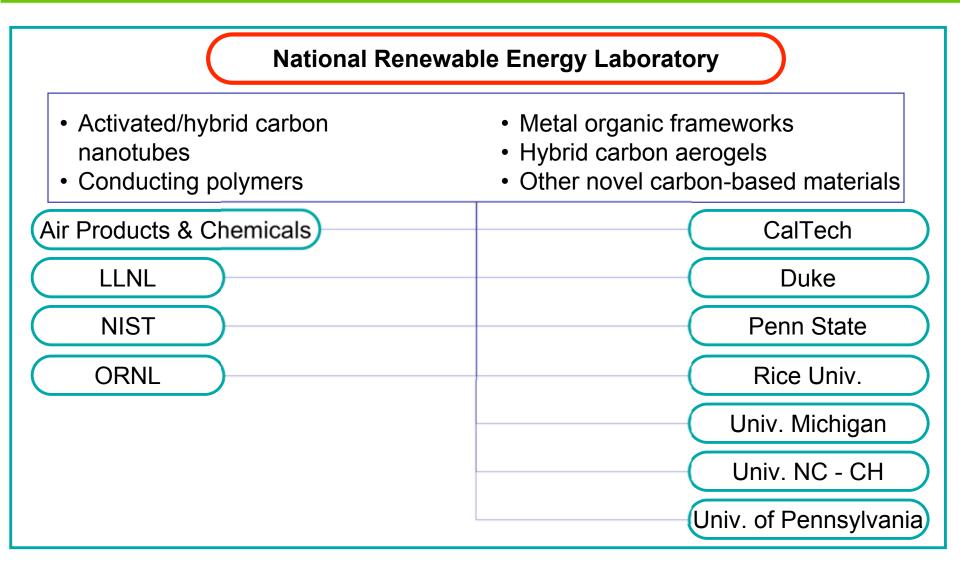

-2.0 kWh/kg, 1.5 kWh/liter, \$4/kWh

* Focus of compressed and liquid hydrogen R&D is cost reduction and off-board storage.


- Identified methods to improve kinetics in solid-state materials & pathways to greater capacity (U. Hawaii, SNL)
- Demonstrated 10,000-psi tanks with improved energy density, 10X greater cycle life, & fast-fill capability (Quantum)
- Developed and tested novel 5000-psi cryocompressed tank demonstrating good performance after cryogenic temperature cycling (LLNL)




The DOE "Grand Challenge" will form the basis of the National Hydrogen Storage Project.



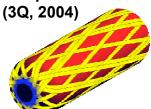
Fourteen independent projects will address new materials and/or processes.

Lead Institution	Area of Research		
Alfred University	Glass microspheres – Photo enhanced diffusion		
Michigan Technological University	Metal perhydrides		
SUNY-Syracuse	Nanostructured activated carbon		
UC-Berkeley	Magnesium nanomaterials		
UC-Santa Barbara	Organic/inorganic framework materials, metal hydrogen complexes		
University of Connecticut	Lithium nitride		
University of Michigan	Metal organic frameworks		
University of Missouri - St. Louis	Clathrates		
University of Pennsylvania	Carbon based nanomaterials- carbide derived carbon		
Carnegie Institute	Clathrates		
Research Triangle Institute	Amine borane complexes		
Gas Technology Institute	Electron charged graphite; Off-Board Storage		
TOFTEC, Inc.	Carbon and boron nitride		
TIAX LLC	System analysis on fuel chain efficiency, environmental impact and cost		

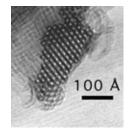
Key Milestones

Complete construction of materials test facility (4Q, 2004)

Validate compressed and liquid tanks in complete system achieving 2005 targets (3Q, 2006)


Complete chemical hydride life-cycle analysis (3Q, 2006)

2004


Complete assessment of composite

materials and design parameters for 10K psi compressed tank

2006

Demonstrate 4 wt% storage capacity on carbon nanotubes (4Q, 2005)

2007

Down-select from chemical hydrides (4Q, 2006)

Down-select complex hydride materials (4Q, 2006)

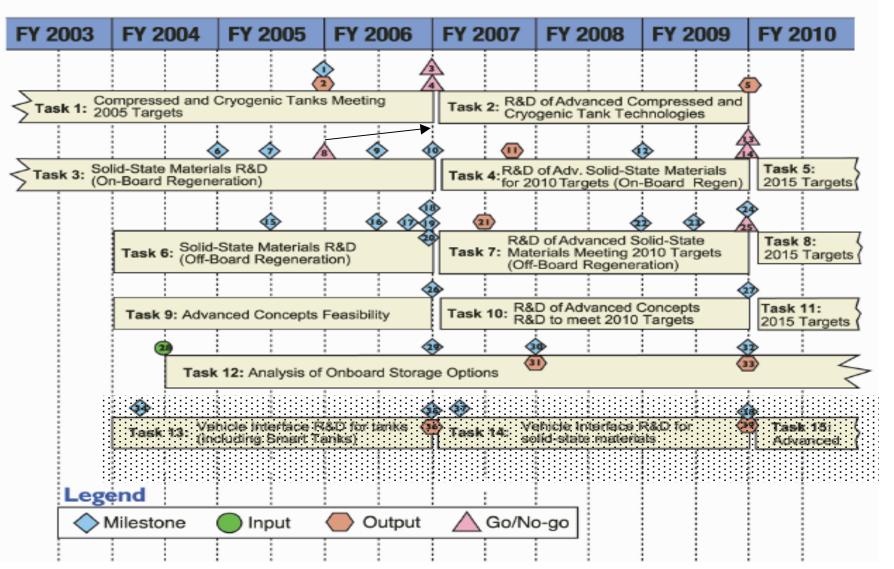
Down-select new materials / concepts (4Q, 2006)

Go/no-go decision on carbon nanotubes (4Q, 2006)

DOE Hydrogen Storage Team

- Antonio Bouza: Compressed and Liquid Hydrogen

 Phone 202-586-4563; antonio.bouza@ee.doe.gov
- Carole J. Read: Metal Hydrides
 - Phone 202-586-3152; carole.read@ee.doe.gov
- Sunita Satyapal: Chemical Hydrogen, Carbon
 - Phone 202-586-2336; *sunita.satyapal@ee.doe.gov*
- JoAnn Milliken: Team Leader
 - Phone 202-586-2480; joann.milliken@ee.doe.gov



Detailed R&D Timeline/Milestones

Hydrogen Storage R&D

Compressed/Liquid Tanks

- 1. Complete feasibility study of hybrid tank concepts (4Q, 2005)
- 2. Compressed and cryogenic liquid storage tanks achieving the 2005 targets to Tech Val (3Q, 2006)
- 3. Go/no-go decision on insulated pressure vessels for cryogenic tanks with minimum evaporative losses (4Q, 2006)

Milestones

- 4. Go/No-Go decision on liquid and compressed tank technologies (4Q, 2006)
- 5. Advanced compressed/cryo tank technologies to Tech Val (4Q, 2009)

Reversible Solid-State Materials

- 6. Complete construction of materials test facility (4Q, 2004)
- 7. Complete verification of test facility (2Q, 2005)
- 8. Go/no-go decision point on carbon nanotubes (4Q, 2006) (Reproducibility plan in place)
- 9. Complete prototype complex hydride integrated system meeting 2005 targets (2Q, 2006)
- 10. Downselect complex hydride materials (4Q, 2006)
- 11. Complex hydride integrated system meeting 2005 targets (3Q, 2007, to fuel cells and technology validation)
- 12. Complete prototype complex hydride integrated system meeting 2010 targets (4Q, 2008)
- 13. Go/no-go decision on continuation of complex hydride R&D (4Q, 2009)
- 14. Go/no-go decision point on other carbon nanostructures (4Q, 2009)

Chemical Storage

- 15. Downselect from hydride regeneration processes (2Q, 2005)
- 16. Demonstrate efficient hydride regeneration laboratory process (2Q, 2006)
- 17. Complete chemical hydride life-cycle analysis (3Q, 2006)
- 18. Demonstrate scaled-up hydride regeneration process (4Q, 2006)
- 19. Complete prototype hydride integrated system (4Q, 2006)
- 20. Downselect from chemical storage approaches for 2010 targets (4Q, 2006)
- 21. Full-cycle, integrated chemical hydride system meeting 2005 targets (2Q, 2007, to fuel cells and technology validation)
- 22. Demonstrate advanced hydride regeneration laboratory process (4Q, 2008)
- 23. Complete prototype advanced chemical storage integrated system (2Q, 2009)
- 24. Demonstrate scaled-up advanced hydride regeneration process (4Q, 2009)
- 25. Go/no-go decision point on chemical storage R&D for 2015 targets (4Q, 2009)

Milestones, cont'd

New Materials/Concepts

- 26. Downselect from new materials/concepts (4Q, 2006)
- 27. Downselect the two most promising new materials/concepts for continued development (4Q, 2009)

Analysis

- 28. Safety requirements/protocols for onboard storage (3Q, 2004, from safety)
- 29. Update onboard storage targets (4Q, 2006)
- 30. Complete analysis of best storage option for 2010 targets (4Q, 2007)
- 31. Analysis results to delivery (4Q, 2007)
- 32. Complete analysis of best storage option for 2015 targets (4Q, 2009)
- 33. Analysis results to delivery (4Q, 2009)