### Novel Compression and Fueling Apparatus to Meet Hydrogen Vehicle Range Requirements

Todd Carlson Future Energy Solutions Air Products and Chemicals, Inc. May 24, 2004

Contributors: Bharat Bhatt (Process Design) Bob Byerley (Process Controls) David Chalk (Machinery Design) Simone Kothare (Dynamic Modeling) William Kottke (Process Design/Machinery) Jorge Mandler (Advanced Controls) Nick Pugliese (Fabrication)

This presentation does not contain any proprietary or confidential information

#### **FY 04 Objectives**

- Primary
  - Develop a process design for a novel compressor
  - Identify potential hydraulic fluids
  - Complete technical/economic evaluation of system
- Secondary
  - Investigate other fueling components to support 700 barg (10,000 psig) hydrogen fueling

#### **Budget**

|           | To Date   | Remaining     | Total         |
|-----------|-----------|---------------|---------------|
| Labor     | \$290,141 | \$<br>155,833 | \$<br>445,974 |
| Materials | \$19,481  | \$<br>225,420 | \$<br>244,901 |
| Total     | \$309,622 | \$<br>381,253 | \$<br>690,875 |

- 50% Cost Share
- Special Program through Pennsylvania Department of Environmental Protection

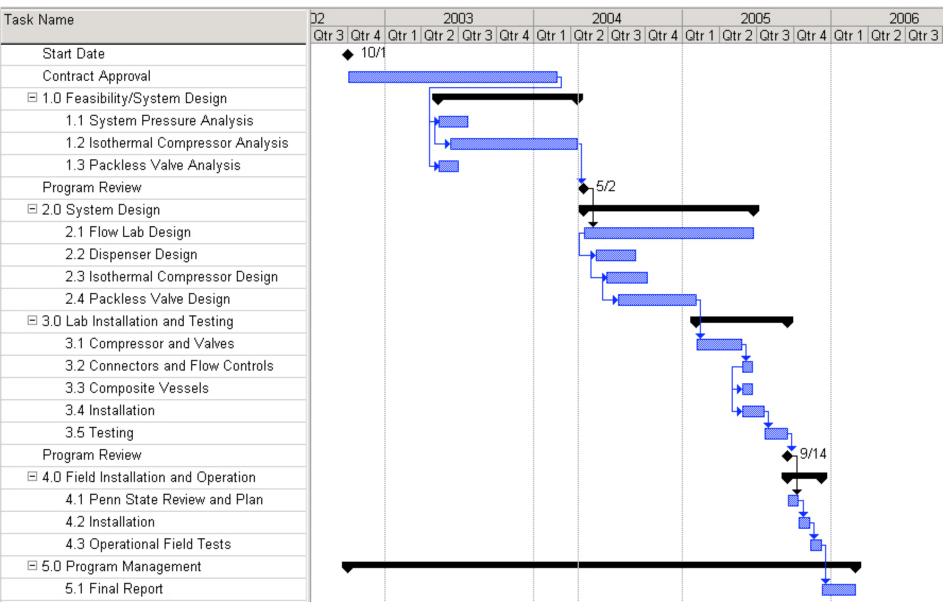
#### **Technical Barriers and Targets**

#### Technical Barriers

- High Cost of Hydrogen Compression
- High Cost of Storage and Dispensing
- Cost of Hydrogen
- FY 05 Targets
  - \$0.29/kg cost of compression
  - \$0.19/kg cost of storage and dispensing
  - 85% efficient compression
  - \$3/kg hydrogen fuel

#### Approach

- Conceptual Design
- Process Design
- Thermodynamic Data
- Fluid Selection and Testing
  - Measure hydrogen solubility in various fluids
  - Test permeation of pressure transducer diaphragms at various pressures
- Dynamic Modeling
  - Evaluate compressor using a custom model
  - Optimize design, operation and control
  - Evaluate heat transfer issues and check isothermal assumptions
  - Evaluate sensitivity of unit to various design parameter upsets and operating conditions
- Component Design, Fabrication, and Testing
- Prototype
- Long Term Testing


#### Approach Design Issues

- Compressor
  - Isothermal
  - High pressure
  - Single stage
  - Low cost
- Fueling Station
  - Lower the delivered cost of hydrogen
  - Composite vessels
  - Breakaway and fuel nozzle
  - Fueling codes

#### Safety

- Air Products Hydrogen Experience
  - Over 10,000 fills (60/week)
  - 13 fuelers installed last year (>20 total, 6 in construction)
  - Industrial hydrogen (30+ years, 55% merchant market share, 1000 gaseous/500 liquid customers, pipelines, reformers, electrolysis)
- Internal Hazard and Operability Review
  - Divide system into nodes
  - Review deviations and effects
- Our fueling systems have undergone rigorous third party independent safety reviews
  - ABS Consulting Singapore
  - NASA White Sands, NM
  - KHK/JHPGSL Kagoshima, Japan
- Management of Change, Near Miss Reporting, Quantified Risk Assessment, and other project management systems.

#### **Timeline**



#### **Novel Compressor – Basic Concept**

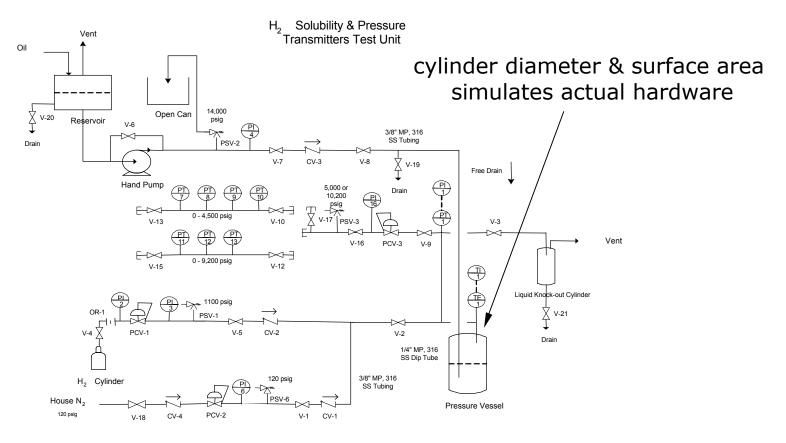
- No Mechanical Piston: Gas compressed by liquid piston
- Isothermal: Gas cooled during compression
- Single Stage: Liquid piston permits high pressure ratio by elimination of piston to cylinder clearance concerns
- Liquid Pump: Inherently lubricates all dynamic seals
- Dynamic Gas Seals Eliminated: No gas seals to atmosphere
- Issues:
  - 14,000 psig hydraulic pump
  - Fluid selection
  - Level control
  - Inefficient pump
  - Fluid carryover

#### Patents Pending

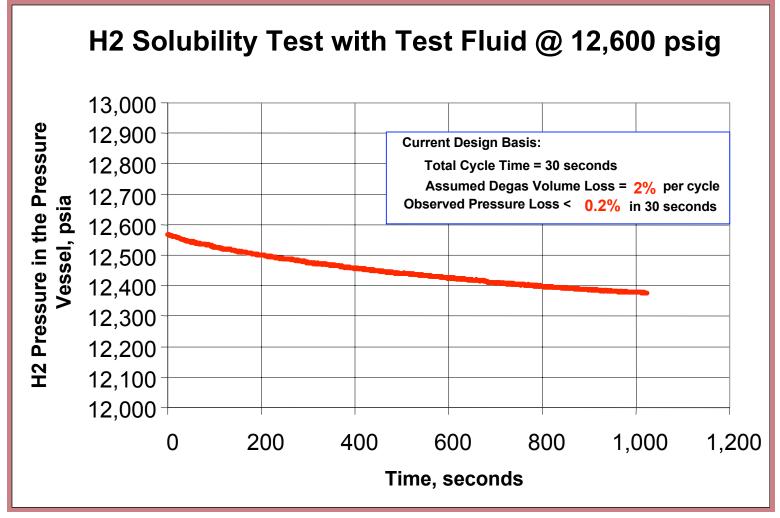
many typical machinery issues eliminated by liquid piston

#### **Technical Accomplishments Hydraulic Fluid Selection**

#### Criteria:


- Low viscosity for good flowing characteristics
- Low volatility to avoid contamination of downstream equipment and fluid loss
- Low H<sub>2</sub> solubility to minimize H<sub>2</sub> recycle
- Lubricating properties at high pressure to minimize pump wear

#### Problem:

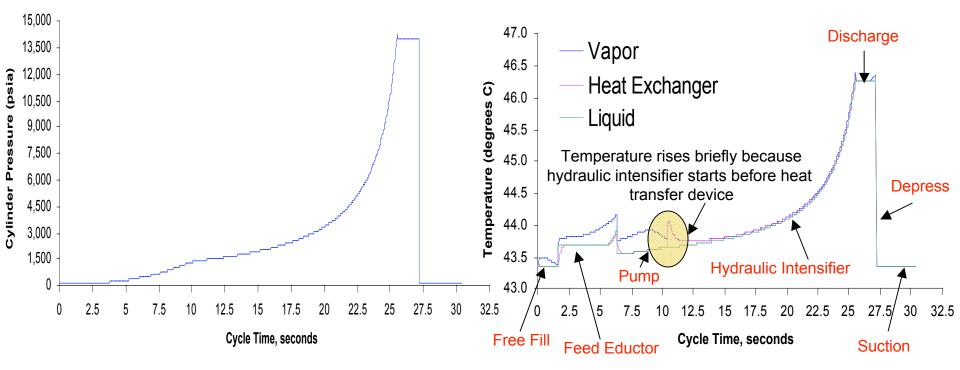

 Hydrogen solubility data not available for fluid at high pressure

#### **Fluid Solubility Test**

- H<sub>2</sub> fills test chamber under pressure
- Fluid introduced, pumped in
- Pressure measured vs. time



#### **Pressure Decay**




solubility well below acceptable limits

#### **Technical Accomplishments Cylinder Pressure and Temperature**

Cylinder Pressure (psia) vs Time (sec)

Cylinder Temperature (°C) vs Time (sec)



~ 3-4 °C temperature rise for 140:1 compression ratio

#### **Technical Accomplishments Dyanamic Simulation Results**

- Identified key operational issues and design parameters:
  - Surface area requirements in heat exchanger and heat transfer coefficients for near isothermal operation
  - Liquid inventory management needs (pressure/flow regulation)
- Quantitative results on potential sources of inefficiency:
  - Hydraulic intensifier friction
  - Circuit DPs
  - Hydrogen solubility in compression fluid
  - Heat transfer limits and design of heat exchanger
- Process sensitivities to the following parameters studied:
  - Initial accumulator gas volume
  - Pump flow
  - Hydraulic intensifier flow
  - Valve flow coefficients

novel H<sub>2</sub> compressor unit is feasible

#### **Pressure Analysis**

- All automotive OEM's are pursuing 700 barg fueling to achieve US norm of 300 mile range.
- Fast fill (~ 3 minutes) is the only method that has commercial potential.
- Cascade fueling is the most promising method of achieving a low cost, fast fill.
- Cascade filling requires a minimum of 25% overpressure to counter vehicle tank heating.
- Fast fill to 700 barg will require cooling of the hydrogen on most days.
- ASME and Air Products requirements for relief values (set at vessel MAWP) impose a maximum operating pressure of 90% of MAWP.

(700 Barg \* 125%) / 90% = 972 Barg MAWP (14100 psig)

System pressure requirement is 14100 psig MAWP

#### **Technical Accomplishments Fueling Apparatus**

- Air Products has developed hydrogen fueling systems up to 700 barg (10,000 psig).
  - Valves
    - Manual
    - Actuated
    - Pressure Control
  - Flexible Hose
  - Tubing
  - Fittings and Adapters
  - Controller
  - Packaging



Most components available today for 700 barg fueling

#### **FY 05 Next Steps**

- Safety Review of Process / Hazard Review.
- Complete detailed design / drawings.
- Obtain quotes for all parts & purchase.
- Assemble and Test.
- Determine overall costs.
- Determine feasibility of future use.
- Long term prototype testing, if warranted.
- Scale-up unit, if warranted.

#### **Interactions/Collaborations**

- Air Products and Chemicals, Inc.
  - Future Energy Solutions
  - Advanced Systems Machinery
  - Advanced Controls
  - Dynamic Modeling
  - Corporate Safety



# Thank you

## tell me more www.airproducts.com