R&D of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

Mark F. Wait Air Products and Chemicals Inc. Allentown, Pennsylvania, USA

Scott Wilshire Plug Power, Inc. Latham, New York, USA

1

2004 Hydrogen and Fuel Cells Merit Review Meeting Philadelphia, PA May 27, 2004

This presentation does not contain any proprietary or confidential information.

© Air Products & Chemicals, Inc., 2004

Las Vegas Hydrogen Fueling and Energy Station – Compression, Storage and Fueling

Las Vegas Hydrogen Fueling and Energy Station – Distributed Hydrogen Generation and PEM Fuel Cell Power Generation

Nevada Hydrogen Project

Program Objectives

- Demonstrate small, on-site H₂ production for fuel cell power generation and H₂ fueling station
- Demonstrate multipurpose vehicle refueling station to dispense H₂/CNG blend and pure H₂
- Demonstrate H₂-fueled stationary 50kW fuel cell
- Evaluate operability/reliability/economic feasibility, and certify integrated power generation and vehicle refueling designs
- Expand the current facility to serve as the first commercial facility when sufficient hydrogen demand develops.

FY03 Budget

Total Project Budget: > \$13,118,282
Cost Sharing to Date: > DOE - \$6,121,049 > Air Products and Partners - \$6,121,075
FY2004 Funding > DOE - \$360,000

DOE Technical Barriers

DOE HFCIT Multi-Year Plan

- Technology Validation (Section 3.5.4.2), Task #3.
 - ➢ B. Storage Cost, Performance, Structural Integrity
 - C. Hydrogen Refueling Infrastructure Cost of Hydrogen, Low Availability, Safe Systems
 - D. Maintenance & Training Facilities Operating and Maintenance Requirements, Personnel Training
 - E. Codes & Standards Lack of Adopted Codes and Standards
 - I. Hydrogen and Electricity Co-production Cost and Durability, Permitting, Safety Procedures

DOE Technical Targets

DOE HFCIT Multi-Year Plan

- Table 3.1.2, Technical Targets
 - Reformer Efficiency, 2003, %(LHV) 70%
 - Vegas Result, 2000 design 68% (Current test data)
 - Test data collected while producing < 1 ppm CO purity</p>
 - Vegas has capability to meet target; additional operation to demonstrate capability
 - PSU Program will deliver improvements to 2005 targets
 - Cost of Hydrogen, 2003, \$/kg \$5.00
 - Vegas Result < \$5.00</p>
 - Based on evaluation of Las Vegas Energy Station performance using HFCIT MYPP assumptions
 - PSU Program will deliver improvements to 2005 targets

Technical Approach

- Design, Build, Test
 - Scaled extension of research
 - Real-world performance and durability testing
 - Site selection, permitting, safety, operability, reliability, maintenance experience clarifies research and development gaps
- Severe Test Environment Las Vegas
 - Desert climate high summer temps, occasional freezing temps in winter
 - 2000 feet above sea level
 - CO2 Non-attainment (Clark County)

Technical Approach

- Phase 1
 - > Define System Requirements
 - Finalize System Definition to Requirements
 - System Engineering and Design
- Phase 2
 - Equipment Manufacturing
 - Detailed Design for Integrated System Installation
 - Installation, Commissioning and Start-up
- Phase 3
 - Demonstration Operation and Maintenance
 - Data Collection and Analysis
 - Feedback to Future Designs
 - Select Existing System Improvements

Project Timeline

			2000			2001			20	2002			2003			2004		
ID	Task Name	Q3 Q4	Q1	Q2 Q3	3 Q4	Q1	Q2	Q3 C	4 Q′	1 Q2	2Q3	Q4	Q1 Q2	Q3 C	24 Q	1 Q2	2Q3	Q 4
1	Phase 1 - Engineering and Design																	
2	Phase 2 - Manufacture, Install, Start-up																	
3	Phase 3 - Operation Period																	

- Hydrogen Generator Start-up at Site Achieved August 2002
- Site Opening Dedication in November 2002
- Currently 6 Quarters into the scheduled two year demonstration operating period

Project Safety

Safety Evaluated by DOE Safety Panel in Mar 04

- > No major issues, some areas of interest:
 - Hydrogen fill rates
 - Underground piping
 - Mechanical joints
 - Pressurized Storage Vessel MIP

Site Safety Performance to Date Validates Design

- No safety incidents for site over 18 months of operation
- 80+ fuel fills conducted without station incident
- Inherently safe systems with safety instrumented controls

• Vegas Energy Station Safety Efforts

- > Hazop, MOC, Quantitative Risk as required
- Use of applicable industry codes
- Operational Readiness Inspection (ORI)
- Trained Operating Personnel
- Safety Performance Measured

Technical Accomplishments – Hydrogen Generator

Status Overview

- Over 2800 hours operation
- Satisfactory process operation and product purity capability
- > One button start, load following, additional features
- Remote monitoring from Allentown / Sacramento

• Performance

- 68% LHV Efficiency achieved w/ year 2000 design basis equipment,
 < 1 ppm CO purity control; 70% LHV Efficiency is achievable
- Sound process technology implementation
- Some reliability issues common component issues
 - Burner failure
 - Spurious thermocouple signals
 - Compressor vibration issues
- Interim inspection of equipment showed equipment in good mechanical condition

Technical Accomplishments – Hydrogen Generator (Cont)

• Operating Experience Information

- Severe diurnal cycling affects ambient conditions, influencing process dynamics
- Seasonal ambient changes influence process dynamics
- Steam system dynamics and control
- More than sufficient instrumentation for safe and reliable control system, but always one or two other data points you could use
- Shutdown / Start-up thermal cycling potential longer term durability issue for catalyst

• Next Operating Test Campaign

- Added primary air flow measurement
- Added steam flow measurement
- Added additional thermocouples along reformer tube to monitor thermal stratification
- 2000 hour on-purpose test run in progress

Technical Accomplishments – Fueling Station (Cont)

- Status Overview
 - > Approx. 70 H2 / CNG Fills
 - > Approx. 10 H2 Fills
 - Fleet not yet established
 - One H2/CNG LDV (F150 Pick-up)
 - One H2/CNG Bus
- Performance
 - Storage systems providing adequate capacity for current demand
 - Dispenser engineering and design validated (2000 design basis, non-communication fill)
 - Instrument air has been primary cause of isolated issues

apci

City of Las Vegas H2 / CNG Bus

Project Overview

- Completed Fuel Cell system detailed design, fabrication, and testing.
 - •Plug Power's first large scale stationary system.
- Initial startup and qualification testing yielded a number of design changes related to component selection, control and electronic equipment, software algorithms, and gas delivery systems.
- Executed test program to first qualify individual subsystems followed by final system configuration testing.
- Test data provided an operational baseline and validation of the interface conditions to support integration into the refueling station.
- Shipped 50 kW fuel cell system to Las Vegas October 2001.
- System commissioned September 2002.

Overview & Equipment

Parameter	Specification						
Installation Location	Outdoor						
Grid Parallel	Yes						
Power Output/Set points (approximate)	15kW, 30 kW, 50 kW						
Remote monitoring capability	Via phone line and modem						
Electrical Output	480 VAC, 3 Phase, 60 Hz						
Power Quality	IEEE 519 or better						
Ambient Design Conditions	Minimum Temperature: 10 °F						
	Maximum Temperature: 115 °F						
Fuel Supply	Hydrogen						
Purity	98 % to 99.9 %						
Operating Supply Pressure	< 100 ppm hydrocarbons						
Maximum Design Pressure	<1 ppm carbon monoxide						
H2 Supply Temperature	<1 ppm sulfur						
	100 +/- 10 psig						
	150 psig						
1	-30°F to 140°F						

Overview & Equipment

Key Technical Barriers *

Cost of Electricity (COE)

- Plug Power utilizes a COE approach to assess in order of importance, elements of fuel cell operations on the pathway to commercial viability. The COE model has three elements.
- Capital or First Cost
 - O. Stack Material & Manufacturing Costs
- Operating and Maintenance Cost
 - E. Durability
 - R. Thermal & Water Management
- Energy Conversion Efficiency
 - F. Heat Utilization
 - G. Power Electronics

* as identified in the Multi-Year Research, Development, and Demonstration Plan Section 3.4.4.2 – Barriers

Technical Barriers

- Fuel Cell System
 - Approach changed from single stack to eight manifolded stacks
 - Limited experience in manifolding stacks, cell voltage scanners
 - Balance of plant issues included cathode humidification
 - Overall control system utilized Lab View lacked robustness and ability to easily change software as changes were identified
 - Limited lifetime of this generation of stack materials (200 hours in 2001 to >8000 hours today)
 - Electrical integration and control of stacks required development of new approaches
 - Viability of system design deemed not able to be made commercially viable. First cost of \$6000 per kW too high for marketplace
- Site Integration
 - Initial experience in connecting fuel cell to third-party reformer
 - Grid interconnection initially challenging (approvals)

Technical and Program Accomplishments

- Fuel Cell System Design
 - Cell voltage monitoring critical to reliability
 - Ability to leverage existing design (Platform approach)
 - System integration experience
 - Key learning of electrical noise issues, resolutions
 - Manifolding stacks
 - Three Phase Inverter integration
 - Basic understanding of stack humidification & water management
- Site Integration
 - Fuel cell system Reformer integration.
 - Hydrogen design requirements

Technical and Program Accomplishments

System Run Time: 1414 hours Power Produced: 43,500 kWh System Efficiency: 36.3% Stack Efficiency: 46.8%

Impact of humidification change Cell degradation rate decreased to 5μ V, translating to projected stack life of 12,000 hours.

Adoption (as a function of Technical Barriers)

Scott Wilshire Director of Marketing Engagement 518-782-7700 X1338 scott_wilshire@plugpower.com

Responses to Prior Year Comments

- Data Collection, Analysis and Econ Evaluation
 - Interim evaluations concluded and reports in process
 - Data exchange with collaborating entities underway
 - Additional data collection and evaluation to follow
- Site Footprint (relatively large footprint)
 - Energy Station site took advantage of available plot
 - Additional unoccupied foundation is part of site
 - Other Air Products sites are much smaller
 - PSU site will be much smaller
- Educational Benefits
 - Significant international and national visitor traffic
 - International Energy Agency
 - DOE Safety Panel
 - Numerous conference tours (PowerGen, APTA, etc.)
 - Permit experiences shared

Future Work

- Conclude current operating period
 - Collect operating data for analysis
 - Addl Generator analysis for added data pts
 - Addl economic evaluation
 - Incorporation of lessons learned into PSU
 - H2 Generator Packaging
 - H2 Generator Process and Control Improvements
 - System Design, Costs and Economics
 - Support CLV fleet expansion
- Planning for continued DOE support of site beyond current operating period
 - Potential for upgrade of fueling systems for 350 Bar / 5000 psig fueling (systems mechanically rated for 5000 psig)
 - Potential for upgrade of fueling systems for communication based fill
 - Continued use of Vegas asset as a R&D test bed facility
 - Support Vegas Fleet Build-out
 - Current fleet of 268 CNG vehicles
 - Progressive in testing / adopting alternative fuels

Collaborations

- Special Thanks to Dr. Venki Raman, Air Products
- DOE HQ and Golden Field Office
- Dan Hyde, City of Las Vegas Fleet Site Mgr
- Plug Power Rob Dross, Dave Parry, Bob Sinuc, Scott Wilshire
- Sandia National Laboratory Andrew Lutz
- International Energy Agency
- DOE Safety Panel

PLUG POWER. PLUG WILL.

Thank you

tell me more www.airproducts.com