

2004 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Review

Hydrogen and Natural Gas Blends; Converting Light and Heavy Duty Vehicles

Kirk Collier Collier Technologies May, 2004

This presentation does not contain any proprietary or confidential information

Project Objectives:

To develop and demonstrate the viability of hydrogen natural gas mixtures (HCNG) as a means of providing a transition strategy to hydrogen fuel cells

- Demonstrate vehicle reliability of HCNG
- Demonstrate reduced vehicle emissions
- Develop commercial products that will utilize major advantages of HCNG

Budget

- Total Funding Since Fy'99 = 929k
- Cost Share = 370k
- Cost to DoE = 559k
- Funding in FY'04 Currently 50k

Technical Barriers and Targets

Barriers

- Achieve equivalent power to previous fuel
 - Created by using charge dilution to achieve reduced exhaust emissions

Targets

- Meet SULEV NOx emissions for light-duty vehicles
- Meet proposed 2007 NOx emissions for transit buses (0.02 g/hp-hr)

Approach

- Use cooled exhaust gas recirculation with the addition of a supercharger for lightduty vehicles
- Use lean burn with increased engine displacement and higher turbocharger boost pressures for heavy-duty vehicles

Project Timeline

10/1999 - 4/2002	4/2002 - 5/2003	5/2003 – 9/2004
Phase I	Phase II	Phase III

Phase I – Initial Development

- Design, build and test heavy duty bus engine
- Design light-duty conversion to HCNG

Phase II – Deployment

- Integrate heavy duty engine into existing bus and deliver to the City of Las Vegas
- Convert light-duty vehicle and deliver to the City of Las Vegas
- Phase III Expand Fleet & Develop New Bus Platform
 - Conversion of additional light-duty vehicles
 - Development and testing of new heavy duty engine platform

Technical

Accomplishments/Progress (LDV)

- Successfully developed "kit" that is user installable
- Have successfully demonstrated 50k
 miles of trouble free operation
- Demonstrated NOx reductions from 24 to 96%, depending on test and application

Emissions Results (LDV) Ford F150

Fuel	Test	NMHC	СО	NOx
		(g/mile)	(g/mile)	(g/mile)
HCNG	FTP	0.018	0.251	0.084
Gasoline	FTP	0.115	1.551	0.167
CNG	FTP	0.023	0.567	0.110

CAVTC

cti

CLEAN AIR VEHICLE TECHNOLOGY CENTER

<u>1975 Federal City Gasoline</u> Test

Test <u>6224</u>		Vehicle			Fuel		
Date 10/24/01		Control	##01NRG0	1	Name	30%hydr	ogen
Time 10:13		Model	2001 ford f	-150 xlt	CWF	0.733	•
Cell ID Cell 1		VIN	1FTRX17L51N	370528	OWF	0.014	
Test epa75		Engine	1fmxt05.4p	fs	Spc Grv	0.609	
Shift epa75		Odometer	738		NHV	20530	
Driver Gil Rodrig	uez D	yno Inertia	5,500		R-Factor	0.60	
Operator Glen Muño	oz Dyn	o AHP/IHP	20.8/18.4		Control #	TANK1	
Ambient Conditions	20.024	20.025		Commei	nts	-1	
Baro (inHg) 50.030	45.60	46.12		50%ilyulog	en 7070natui	ai gas	
Dew Pt (F) 43.72	45.09	40.15					
Dry Temp (F) 73.49	20.2070/	02.79					
Humidity 34.732%	29.207%	27.704% 45.77					
Abs $(gr/lb) + 3.03$	0.877	0.880		Tire Pressu	re=45 nsi Tr	ans Type=4	-4 40% fill=5 0
NUX K Factor	0.077	0.000		EDA fuel e	onomy calcu	ulation used	1, 1070 III 5.0
Phase Variables				LIA IUCI O	conomy care	nation used.	
Begin	End	Length	Viol	Dist (mi)	Vmix(ft3)		
Phase 1 10:13:19	10:21:48	509	0	3.598	2850.89	1	
Phase 2 10:21:48	10:36:18	870.4	0	3.861	4953.96	1	
Phase 3 10:46:19	10:54:46	507.7	0	3.590	2888.72	1	
						-	
Bag Readings							
Phase 1	HC ppmC	CO ppm	NOX ppm	% CO2	CH4ppm	NMHCppn	n
Phase 1 Full Scale	HC ppmC 100.00	CO ppm 500.00	NOX ppm 30.00	% CO2 2.00	CH4ppm 50.00	NMHCppn	
Phase 1 Full Scale Sample Conc.	HC ppmC 100.00 32.310	CO ppm 500.00 87.997	NOX ppm 30.00 0.521	% CO2 2.00 1.591	CH4ppm 50.00 26.598	NMHCppn 1.908	n DE 6.11
Phase 1 Full Scale Sample Conc. Ambient Conc.	HC ppmC 100.00 32.310 9.302	CO ppm 500.00 87.997 0.000	NOX ppm 30.00 0.521 0.072	% CO2 2.00 1.591 0.054	CH4ppm 50.00 26.598 6.823	NMHCppn 1.908 1.503	0 <u>DE</u> 6.11
Phase 1 Full Scale Sample Conc. Ambient Conc. Net Conc	HC ppmC 100.00 32.310 9.302 24.532	CO ppm 500.00 87.997 0.000 87.997	NOX ppm 30.00 0.521 0.072 0.461	% CO2 2.00 1.591 0.054 1.546	CH4ppm 50.00 26.598 6.823 20.892	NMHCppn 1.908 1.503 0.652	n <u>DE</u> 6.11
Phase 1 Full Scale Sample Conc. Ambient Conc. Net Conc Grams	HC ppmC 100.00 32.310 9.302 24.532 1.142	CO ppm 500.00 87.997 0.000 87.997 8.269	NOX ppm 30.00 0.521 0.072 0.461 0.062	% CO2 2.00 1.591 0.054 1.546 2283.94	CH4ppm 50.00 26.598 6.823 20.892 0.973	NMHCppn 1.908 1.503 0.652 0.030	n DE 6.11
Phase 1 Full Scale Sample Conc. Ambient Conc. Net Conc Grams Phase 2	HC ppmC 100.00 32.310 9.302 24.532 1.142	CO ppm 500.00 87.997 0.000 87.997 8.269	NOX ppm 30.00 0.521 0.072 0.461 0.062	% CO2 2.00 1.591 0.054 1.546 2283.94	CH4ppm 50.00 26.598 6.823 20.892 0.973	NMHCppn 1.908 1.503 0.652 0.030	n DE 6.11
Phase 1 Full Scale Sample Conc. Ambient Conc. Net Conc Grams Phase 2 Full Scale	HC ppmC 100.00 32.310 9.302 24.532 1.142 30.00	CO ppm 500.00 87.997 0.000 87.997 8.269 100.00	NOX ppm 30.00 0.521 0.072 0.461 0.062 30.00	% CO2 2.00 1.591 0.054 1.546 2283.94 2.00	CH4ppm 50.00 26.598 6.823 20.892 0.973 50.00	NMHCppn 1.908 1.503 0.652 0.030	n DE 6.11
Phase 1 Full Scale Sample Conc. Ambient Conc. Net Conc Grams Phase 2 Full Scale Sample Conc.	HC ppmC 100.00 32.310 9.302 24.532 1.142 30.00 9.794	CO ppm 500.00 87.997 0.000 87.997 8.269 100.00 5.832	NOX ppm 30.00 0.521 0.072 0.461 0.062 30.00 0.084	% CO2 2.00 1.591 0.054 1.546 2283.94 2.00 0.941	CH4ppm 50.00 26.598 6.823 20.892 0.973 50.00 7.655	NMHCppn 1.908 1.503 0.652 0.030 1.045	DE 6.11 DF 10.38
Phase 1 Full Scale Sample Conc. Ambient Conc. Net Conc Grams Phase 2 Full Scale Sample Conc. Ambient Conc.	HC ppmC 100.00 32.310 9.302 24.532 1.142 30.00 9.794 8.905 2.450	CO ppm 500.00 87.997 0.000 87.997 8.269 100.00 5.832 0.000 6.932	NOX ppm 30.00 0.521 0.072 0.461 0.062 30.00 0.084 0.075 0.016	% CO2 2.00 1.591 0.054 1.546 2283.94 2.00 0.941 0.053 0.894	CH4ppm 50.00 26,598 6.823 20.892 0.973 50.00 7.655 5.950 2.278	NMHCppn 1.908 1.503 0.652 0.030 1.045 1.294 0.000	DE 6.11 DF 10.38
Phase 1 Full Scale Sample Conc. Ambient Conc. Net Conc Grams Phase 2 Full Scale Sample Conc. Ambient Conc. Net Conc	HC ppmC 100.00 32.310 9.302 24.532 1.142 30.00 9.794 8.905 2.479	CO ppm 500.00 87.997 0.000 87.997 8.269 100.00 5.832 0.000 5.832	NOX ppm 30.00 0.521 0.072 0.461 0.062 30.00 0.084 0.075 0.016	% CO2 2.00 1.591 0.054 1.546 2283.94 2.00 0.941 0.053 0.894	CH4ppm 50.00 26,598 6.823 20.892 0.973 50.00 7.655 5.950 2.278	NMHCppn 1.908 1.503 0.652 0.030 1.045 1.294 0.000	n <u>DE</u> 6.11 DF 10.38
Phase 1 Full Scale Sample Conc. Ambient Conc. Net Conc Grams Phase 2 Full Scale Sample Conc. Ambient Conc. Net Conc Grams	HC ppmC 100.00 32.310 9.302 24.532 1.142 30.00 9.794 8.905 2.479 0.201	CO ppm 500.00 87.997 0.000 87.997 8.269 100.00 5.832 0.000 5.832 0.952	NOX ppm 30.00 0.521 0.072 0.461 0.062 30.00 0.084 0.075 0.016 0.004	% CO2 2.00 1.591 0.054 1.546 2283.94 2.00 0.941 0.053 0.894 2293.82	CH4ppm 50.00 26.598 6.823 20.892 0.973 50.00 7.655 5.950 2.278 0.184	NMHCppn 1.908 1.503 0.652 0.030 1.045 1.294 0.000 0.000	n <u>DE</u> 6.11 DF 10.38
Phase 1 Full Scale Sample Conc. Ambient Conc. Net Conc Grams Phase 2 Full Scale Sample Conc. Ambient Conc. Net Conc Grams Phase 3	HC ppmC 100.00 32.310 9.302 24.532 1.142 30.00 9.794 8.905 2.479 0.201	CO ppm 500.00 87.997 0.000 87.997 8.269 100.00 5.832 0.000 5.832 0.952	NOX ppm 30.00 0.521 0.072 0.461 0.062 30.00 0.084 0.075 0.016 0.004	% CO2 2.00 1.591 0.054 1.546 2283.94 2.00 0.941 0.053 0.894 2293.82	CH4ppm 50.00 26.598 6.823 20.892 0.973 50.00 7.655 5.950 2.278 0.184	NMHCppn 1.908 1.503 0.652 0.030 1.045 1.294 0.000 0.000	DE 6.11 DF 10.38
Phase 1 Full Scale Sample Conc. Ambient Conc. Net Conc Grams Phase 2 Full Scale Sample Conc. Ambient Conc. Net Conc Grams Phase 3 Full Scale	HC ppmC 100.00 32.310 9.302 24.532 1.142 30.00 9.794 8.905 2.479 0.201 30.00	CO ppm 500.00 87.997 0.000 87.997 8.269 100.00 5.832 0.000 5.832 0.952 100.00	NOX ppm 30.00 0.521 0.072 0.461 0.062 30.00 0.084 0.075 0.016 0.004 30.00	% CO2 2.00 1.591 0.054 1.546 2283.94 2.00 0.941 0.053 0.894 2293.82 2.00	CH4ppm 50.00 26.598 6.823 20.892 0.973 50.00 7.655 5.950 2.278 0.184 50.00	NMHCppn 1.908 1.503 0.652 0.030 1.045 1.294 0.000 0.000	DE 6.11 DF 10.38
Phase 1 Full Scale Sample Conc. Ambient Conc. Net Conc Grams Phase 2 Full Scale Sample Conc. Ambient Conc. Net Conc Grams Phase 3 Full Scale Sample Conc.	HC ppmC 100.00 32.310 9.302 24.532 1.142 30.00 9.794 8.905 2.479 0.201 30.00 16.297	CO ppm 500.00 87.997 0.000 87.997 8.269 100.00 5.832 0.000 5.832 0.952 100.00 25.300	NOX ppm 30.00 0.521 0.072 0.461 0.062 30.00 0.084 0.075 0.016 0.004 30.00 0.075	% CO2 2.00 1.591 0.054 1.546 2283.94 2.00 0.941 0.053 0.894 2293.82 2.00 1.392	CH4ppm 50.00 26.598 6.823 20.892 0.973 50.00 7.655 5.950 2.278 0.184 50.00 13.454	NMHCppn 1.908 1.503 0.652 0.030 1.045 1.294 0.000 0.000 0.920 	n <u>DF</u> 6.11 DF 10.38 <u>DF</u> 7.01
Phase 1 Full Scale Sample Conc. Ambient Conc. Orans Phase 2 Full Scale Sample Conc. Ambient Conc. Grams Phase 3 Full Scale Sample Conc. Ambient Conc.	HC ppmC 100.00 32.310 9.302 24.532 1.142 30.00 9.794 8.905 2.479 0.201 30.00 16.297 6.263 2.927	CO ppm 500.00 87.997 0.000 87.997 8.269 100.00 5.832 0.900 5.832 0.952 100.00 25.300 0.000	NOX ppm 30.00 0.521 0.072 0.461 0.062 30.00 0.084 0.075 0.016 0.004 30.00 0.078 0.073 0.073	% CO2 2.00 1.591 0.054 1.546 2283.94 2.00 0.941 0.053 0.894 2293.82 2.00 1.392 0.054	CH4ppm 50.00 26.598 6.823 20.892 0.973 50.00 7.655 5.950 2.278 0.184 50.00 13.454 4.438	NMHCppn 1.908 1.503 0.652 0.030 1.045 1.294 0.000 0.000 0.000 0.920 1.190 0.920	DE 6.11 DF 10.38 DE 7.01
Phase 1 Full Scale Sample Conc. Ambient Conc. Orans Phase 2 Full Scale Sample Conc. Ambient Conc. Grams Phase 3 Full Scale Sample Conc. Ambient Conc. Ambient Conc. Net Conc	HC ppmC 100.00 32.310 9.302 24.532 1.142 30.00 9.794 8.905 2.479 0.201 30.00 16.297 6.263 10.927	CO ppm 500.00 87.997 0.000 87.997 8.269 100.00 5.832 0.000 5.832 0.952 100.00 25.300 0.000 25.300	NOX ppm 30.00 0.521 0.072 0.461 0.062 30.00 0.084 0.075 0.016 0.004 30.00 0.078 0.073 0.016	% CO2 2.00 1.591 0.054 1.546 2283.94 2.00 0.941 0.053 0.894 2293.82 2.00 1.392 0.054 1.346	CH4ppm 50.00 26.598 6.823 20.892 0.973 50.00 7.655 5.950 2.278 0.184 50.00 13.454 4.438 9.649	NMHCppn 1.908 1.503 0.652 0.030 1.045 1.294 0.000 0.000 0.000 1.190 0.000	DE 6.11 DF 10.38 DE 7.01
Phase 1 Full Scale Sample Conc. Ambient Conc. Net Conc Grams Phase 2 Full Scale Sample Conc. Ambient Conc. Grams Phase 3 Full Scale Sample Conc. Ambient Conc. Ambient Conc. Net Conc Conc Sample Conc.	HC ppmC 100.00 32.310 9.302 24.532 1.142 30.00 9.794 8.905 2.479 0.201 30.00 16.297 6.263 10.927 6.263	CO ppm 500.00 87.997 0.000 87.997 8.269 100.00 5.832 0.000 5.832 0.952 100.00 25.300 0.000 25.300 2.409	NOX ppm 30.00 0.521 0.072 0.461 0.062 30.00 0.084 0.075 0.016 0.004 30.00 0.078 0.073 0.016 0.002	% CO2 2.00 1.591 0.054 1.546 2283.94 2.00 0.941 0.053 0.894 2293.82 2.00 1.392 0.054 1.346 2014.67	CH4ppm 50.00 26.598 6.823 20.892 0.973 50.00 7.655 5.950 2.278 0.184 50.00 13.454 4.438 9.649 0.455	NMHCppn 1.908 1.503 0.652 0.030 1.045 1.294 0.000 0.000 0.920 1.190 0.000 0.000	n DE 6.11 DF 10.38 DE 7.01
Phase 1 Full Scale Sample Conc. Ambient Conc. Net Conc Grams Phase 2 Full Scale Sample Conc. Ambient Conc. Net Conc Grams Phase 3 Full Scale Sample Conc. Ambient Conc. Net Conc Conc Grams Test Results	HC ppmC 100.00 32.310 9.302 24.532 1.142 30.00 9.794 8.905 2.479 0.201 30.00 16.297 6.263 10.927 6.263 10.927	CO ppm 500.00 87.997 0.000 87.997 8.269 100.00 5.832 0.000 5.832 0.952 100.00 25.300 0.000 25.300 2.409 <u>CO</u>	NOX ppm 30.00 0.521 0.072 0.461 0.062 30.00 0.084 0.075 0.016 0.004 30.00 0.078 0.073 0.016 0.002 NOx	% CO2 2.00 1.591 0.054 1.546 2283.94 2.00 0.941 0.053 0.894 2293.82 2.00 1.392 0.054 1.346 2014.67 <u>CO2</u>	CH4ppm 50.00 26.598 6.823 20.892 0.973 50.00 7.655 5.950 2.278 0.184 50.00 13.454 4.438 9.649 0.455 CH4	NMHCppn 1.908 1.503 0.652 0.030 1.045 1.294 0.000 0.000 0.920 1.190 0.000 0.000 NMHC	DE 6.11 DF 10.38 DF 7.01

Technical Accomplishments/Progress (HDV)

- Demonstrated proposed 2007 NOx emissions (0.02 g/hp-hr) with CTIdesigned engine
- Designed, developed and manufactured cylinder heads for Daewoo 11L bus engine

Exhaust Emissions for CTI-Designed Engine

Individual Modes	NOx	THC	NMHC	CO	Weighting
individual modes	(g/bhp-hr)	(g/bhp-hr)	(g/bhp-hr)	(g/bhp-hr)	Factor
1800 rpm - 100% Load	0.15	3.70	0.11	0.00	0.15
- 75% Load	0.12	3.86	0.12	0.00	0.15
- 50% Load	0.09	4.86	0.15	0.00	0.15
10% Load	0.13	8.82	0.26	0.00	0.1
2800 rpm - 100% Load	0.21	3.31	0.10	0.00	0.1
- 75% Load	0.15	3.77	0.11	0.00	0.1
- 50% Load	0.10	5.75	0.17	0.00	0.1
- Idle	0.22	7.21	0.22	0.00	0.15
Weighted 8 Mode (g/bhp-hr)	0.15	5.11	0.15		
Weighted 8 Mode (g/kw-hr)	0.20	6.85	0.21		

30% Hydrogen in 8.4L CTI-Designed Engine

NOx and Efficiency Comparison

Engine Type	Efficiency	NOx (g/hp-hr)
John Deere-CNG	38.1%	10.42
CTI-HCNG	38.3%	0.15

Interactions and Collaborations

- Hess Microgen a subsidiary of Hess Oil, cash co-funded (60k) cylinder head development for Daewoo 11L engine, in-kind cost share included 2 natural gas engines and parts, is USA distributor for NG Daewoo engines
- Gas Research Institute: Cost shared the development of CTI-designed HCNG engine (180k)
- Daewoo Heavy Industries: Technical support, engine control electronics, warranty for HCNG engines

Reviewers' Comments

- Basing HCNG bus engine on custom made parts for racing applications not an appropriate approach
 - Have committed to using a larger displacement engine designed for transit bus and other heavy duty transportation applications
- The cost of converting light-duty vehicles is too high
 - Newest design significantly reduces cost by utilizing the existing OEM computer and catalyst system

Future Plans

Remainder of FY 2004:

- Complete testing and evaluation of 11L Daewoo engine
- Convert nine additional light-duty vehicles for the City of Las Vegas
- Update control strategies for CTI-engined bus

• FY 2005:

- Convert five City of Las Vegas buses with dedicated 11L HCNG engine
- Convert additional light-duty vehicles for the City of Las Vegas

Safety

For 30% hydrogen mixtures in IC engines

- Treat the fuel as if natural gas
 - Use natural gas rated equipment (solenoids, etc.)
 - Use natural gas compressors
 - No deleterious effects noticed in 15 years of usage
- For 100% hydrogen in IC engines
 - Use only hydrogen rated equipment
 - Storage tank area vented
 - Engine compartment vented (hood louvers)
 - No safety-related incidents