2004 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Review Presentation Fuel Cell Powered Underground Mine Loader Vehicle DE-FC36-01GO11095

This presentation does not contain any proprietary or confidential information

David L. Barnes Vehicle Projects LLC 27 May 2004

2004 DOE Program Review – 27 May 2004

Project Objectives

- Develop a metal-hydride, fuelcell-powered mine loader equivalent to a Caterpillar-Elphinstone R1300.
- Evaluate the vehicle in an underground mine in Nevada

Past Year Objectives

- Complete Reports Including:
 - Demonstration of an Electrolysis System for Fuelcell Mining Vehicles
 - Best Methods of Hydrogen Transfer
 - Operating Costs of Hydrogen Production
 - Ventilation Benefit Analysis for Canadian Mines
 - Cost Benefit Analysis of US Underground Mines
 - Capital and Recurring Cost Benefit Analysis for Canadian Mines

Objectives – Continued

Past Year Objectives – con't

Determine Traction Motor

Induction versus Brushless Permanent Magnet (BPM)

• Determine Battery-Hybrid Configuration

- Sizing of batteries to support duty cycle

- Determine Metal-Hydride Amount and Configuration
 - Weight limitation
- Complete Engineering Design

Phase 1 Phase 2 Phase 3	Total:	\$ 926,670 \$3,165,400 <u>\$4,525,303</u> \$8,617,373	
Total DOE Funds: Total NRCan Funds: Placer Dome Funds: Newmont Mining Funds: Total In-Kind Cost Share:		\$4,239,198 \$599,500 \$225,000 \$100,000 \$3,453,675	49.2% 7.0% 2.6% 1.2% 40.0%
FY04 DOE Funds: FY04 Contractor Funds: FY04 Total:		\$1,550,000 <u>\$1,770,000</u> \$3,320,000	46.7% 53.3%

Technical Barriers and Targets

- DOE Technical Barriers for Technology Validation
 - A. Vehicles

Demonstration of complete system

– B. Storage

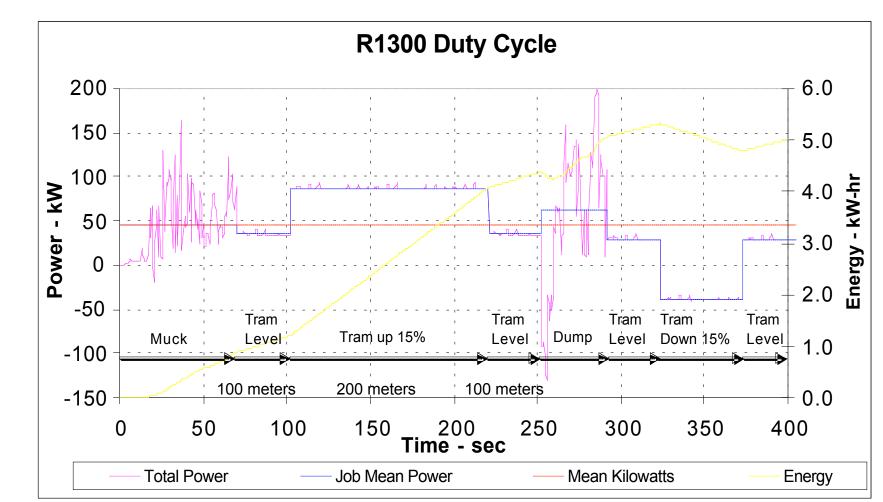
On-board metal-hydride storage

C. Hydrogen Refueling Infrastructure
On-site hydrogen production by electrolysis

- Perform cost-benefit analysis
- Determine operational duty cycle
- Conceptual design
- Detailed engineering design
- Risk assessment
- Fabricate subsystems
- Vehicle integration and test
- Demonstration of vehicle underground

Project Safety

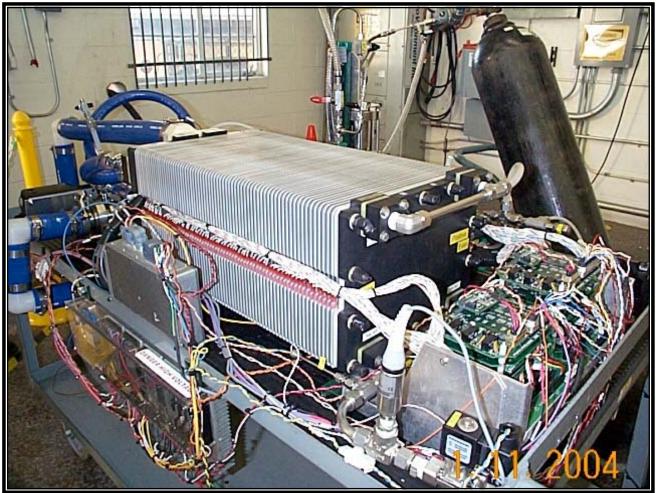
- Risk assessment to identify operational safety and health risks
- Individual failure mode and effects analysis (FMEA) on subassemblies
- Regulatory review including MSHA acceptance
- Lessons learned from DOE Fuelcell-Powered Underground Mine Locomotive Project Risk Assessment


Project Timeline

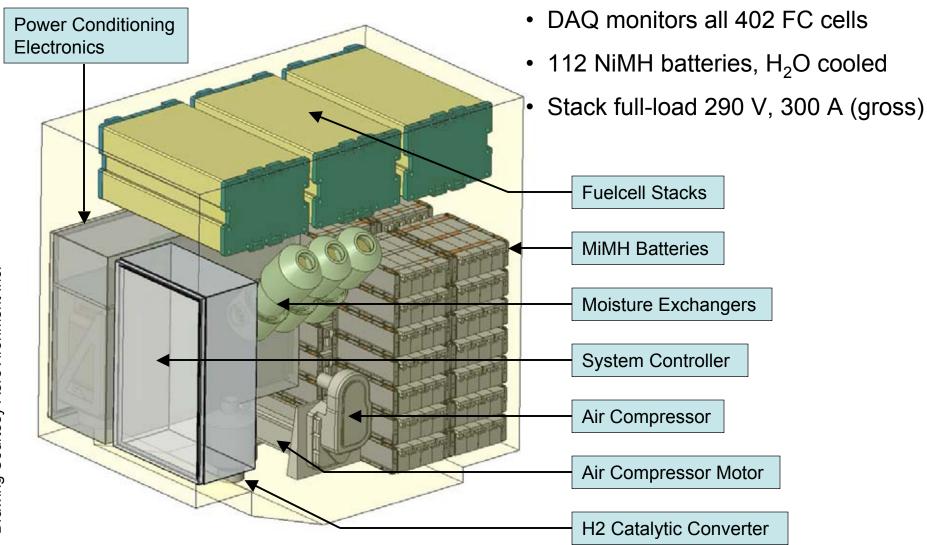
- Phase 1- Cost Benefit Analysis and Preliminary Design
 - 1 Demonstrate electrolyzer refueling station
- Phase 2 Detailed Engineering Design
 - 2 Receive R1300 diesel loader
 - 3 Select battery-hybrid configuration and regenerative braking
 - 4 Receive 87 kW gross continuous fuelcell stacks
- Phase 3 Fabrication, Integration, and Demonstration
 - 5 Deliver 150 kW battery-fuelcell hybrid powerplant
 - 6 Deliver metal-hydride storage (15kg H_2)
 - 7 Vehicle integration and test
 - 8 Underground demonstration (3 mines)

Detailed design includes:

- Fuelcell-battery hybrid powerplant
- 70 kW continuous, 140 kW peak (net)
- Removable metal-hydride storage
- Regenerative braking
- 340 kW (450 hp) DC BPM traction motor
- Separate 100 kW hydraulic BPM motor


2004 DOE Program Review - 27 May 2004

Copyright © 2004 by Vehicle Projects LLC


Fuelcell Stacks Manufactured by Nuvera Fuel Cells Inc.

- 87 kW gross (total)
- 290 V, 300 A full load
- Air pressure 2.0 bara
- H₂ pressure 2.2 bara
- Air stoichiometry 2.0
- Operating temp 60-75° C
- Air RH = 80-100% @ 70° C
- External air humidification
- Fuel loop dead-end mode
- Weight 280 kg
- Volume 220 L

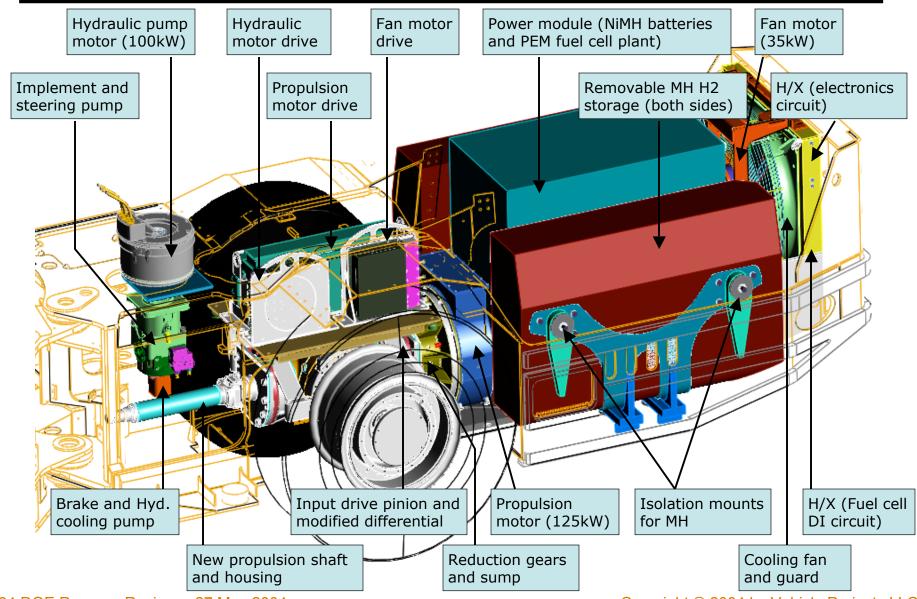
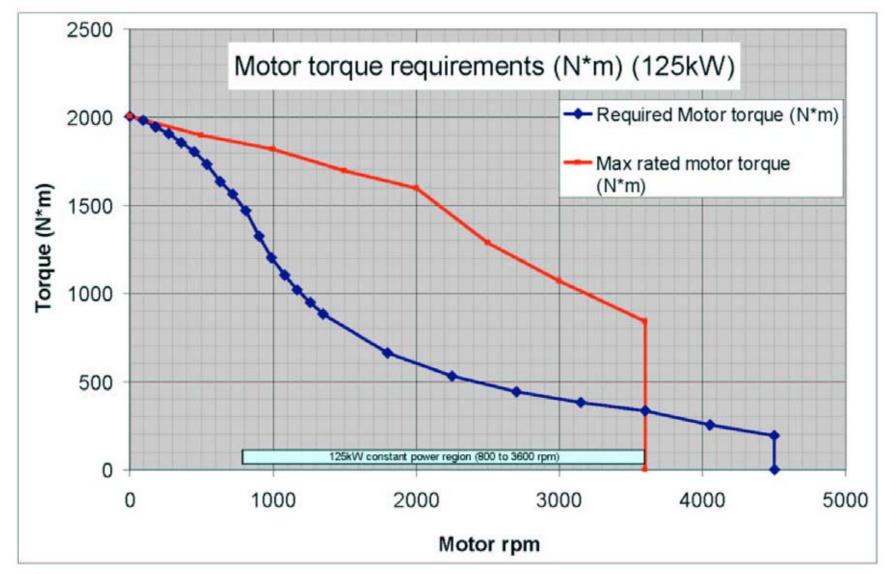

Fuelcell Stacks Bench Tested at AeroVironment Inc.

Photo Courtesy Vehicle Projects LLC

2004 DOE Program Review – 27 May 2004

Copyright © 2004 by Vehicle Projects LLC


2004 DOE Program Review – 27 May 2004

Drawing Courtesy Caterpillar Inc.

Copyright © 2004 by Vehicle Projects LLC

Battery configuration

- Cobasys (formerly Ovonics) NiMH batteries
- Single battery rated at 12 V, 8.5 AH
- 56 in series of 2 each in parallel
- Module rated at 672 V, 17 AH, 11.42 kWH nominal
- Maximum battery power up to 2 minutes will provide additional 65 70 kW

2004 DOE Program Review – 27 May 2004

Copyright © 2004 by Vehicle Projects LLC

Assume battery is cycled from 20 to 80% during each cycle. 80% leaves head-room for regen braking.

Interactions and Collaborations

Engineering and Manufacturing

- AeroVironment Inc.
- Caterpillar Inc.
- Caterpillar-Elphinstone
- DRS-Technologies
- HERA Hydrogen Storage
- Modine Manufacturing Co.
- Nuvera Fuel Cells Inc.
- Stuart Energy

Balance of Plant Vehicle Integration R1300 LHD Loader Traction Motor Metal-Hydride Storage Heating and Cooling Fuelcell Stacks Hydrogen Refueling Station

Interactions and Collaborations

Engineering and Consulting

- Hatch
- Placer Dome Technical Services
- Southwest Research Institute
- WSMS

Risk Assessment, Regulatory End-User Oversight Duty Cycle / Energy Modeling Hydrogen Risk Analysis

Academia

- University Nevada Reno
- Carleton University

Ventilation Evaluation Software Simulation

Interactions and Collaborations

Government

- CANMET (Canadian)
- MSHA

Tech. Transfer, Demo Oversight Regulatory Oversight

End-Users

- Agnico-Eagle Mines Ltd.
- Newmont Mining Corporation
- Placer Dome Ltd.

Mine Demonstration Mine Demonstration Mine Demonstration **Responses to Previous Year Reviewer's Comments**

Project not presented last year

2004 DOE Program Review – 27 May 2004

Copyright © 2004 by Vehicle Projects LLC

Future Work

Remainder of FY 2003

- Fabrication/Assembly of Fuelcell Powerplant, Metal-Hydride Storage
- Loader Teardown and Preparation
- Test Traction Motor and Reduction Gear
- On-going Risk Assessment and Regulatory Review

• FY 2004

- Vehicle Integration
- Vehicle Commissioning
- Complete Risk Analysis and Regulatory Review
- Underground Mine Demonstrations (3 mines)