

DOE Hydrogen Program Technology Validation Sub-Program

Sig Gronich Office of Hydrogen, Fuel Cells, & Infrastructure Technologies May 26, 2004

Validate integrated hydrogen and fuel cell technologies for transportation, infrastructure, and electric generation in a systems context under realworld operating conditions.

Objectives

- By 2009, 250+ mile range, 2000 hour fuel-cell durability (vehicle), \$3.00/gge hydrogen (untaxed)
- 2. By 2008, 30,000 hour fuel-cell durability (stationary), 32% efficiency, \$1,250/kW
- 3. By 2010, biomass/wind or geothermal electrolyzer-to-hydrogen system to produce hydrogen for \$3.30/gge at the plant gate

Bι	ıd	lget	•
		O	

Task		DOE		Cost Shares
		EW&D	Interior	
1	Fleet & Infrastructure	\$297,000	\$8,911,781	\$8,870,781
2	Power Parks	\$680,000		\$680,000
3	Natural Gas to H2 Refueling Stations	\$1,622,751		\$1,119,751
4	Energy Station	\$660,000		\$622,500
5	Renewable	\$415,000		\$100,000
1-5	Earmarks	\$13,924,403		~\$7,860,500
6	Analyses	\$495,000	\$515,000	\$0

Earmark Projects

Hawaii Energy Center	\$2,982,300	Develop fuel cell test center
Chattanooga *	\$2,485,250	Develop, build and test solid oxide fuel cell coproduction system
Washoe County *	\$1,962,155	Develop, build & test geothermal/ electrolyzer refueling station
Regional Infrastructure in PA	\$2,943,232	Develop materials and sensors for pipelines and storage systems
Research & Educ. at U. of So Carolina	\$2,158,370	Develop advanced production, storage, & fuel cell MEA systems
Locomotive fuel cell *	\$600,000 (\$1,862,155)	Develop, build & test underground H2 mine loader
NEXT Energy *	\$793,096	Build and test refueling station

* Pertinent to Technology Validation activities.

New York State Hi- Way Initiative	(\$1,962,155)	Build and test wind hydrogen coproduction facility, build and test refueling station
Florida Hydrogen Partnership	(\$1,962,155)	TBD
Hawaii Power Park	(\$490,539)	Build and test power parks
Univ. of Alabama Birmingham	\$963,372 (2003)	Test stationary and vehicle hydrogen systems
UNLV	\$963,372 (2003)	Build and test photovoltaic refueling station

A	Vehicles	 statistical data for vehicles that are operated under controlled, real-world conditions (i.e., fuel economy, cold start efficiency, stack degradation, system durability) vehicle drivability, operation and maintenance
В	Storage	 driving range cost composite tank operating cycle life and failure
С	Hydrogen Refueling Infrastructure	 capital costs to build and install footprints system availability
D	Hydrogen and Electricity Coproduction	 statistical data on cost and durability of hydrogen fuel cells and reformer systems development of safety procedures codes & standards development availability, operation and maintenance experience
E	Maintenance & Training Facilities	 limited certified procedures limited trained personnel lack of data on operation and maintenance costs

F	Codes & Standards	 statistical data for codes and standards development need development of safety procedures (i.e., HAZOP and FMEA) global standards need to be established
G	Hydrogen from Renewable Resources	 durability, cost and efficiency for integrated renewable electrolysis systems biomass feed system, catalyst lifetimes
Η	Centralized Hydrogen Production from Fossil Resources	• durability, efficiency and cost of high temperature electrolysis systems
Ι	Hydrogen from Nuclear Power	 statistical data on reaction rates, non-equilibrium reactions, and material properties for systems cost and operation of integrated systems durability, efficiency and cost of high temperature electrolysis systems

Approach

- Identification of safety vulnerability techniques used in the analysis of the design and operation of equipment, e.g. hazard and operability study (HAZOP), failure mode and effects analysis (FMEA), others
- Identification of management of change (MOC) process used for the project, briefly describing procedures for changes in chemicals, technology, equipment, and operations
- Any safety-related lessons learned from the project
- Other safety-related insights benefiting the project and/or of potential application to other projects

Task 1Vehicle Field Evaluations

- Task 2Hydrogen Infrastructure
- Task 3Natural Gas-to-Hydrogen RefuelingStations
- Task 4Co-Production of Hydrogen and
Electricity
- Task 5Renewable Hydrogen ProductionSystems
- Task 6 Technical Analyses

Task 1 – Vehicle Field Evaluations (Objective 1)

Description

- Support CaFCP vehicle and bus demonstration
- Support Controlled Fleet demonstrations (collect vehicle operating experience from different geographic regions)
- Identify maintenance, safety and refueling requirements
- Design, build and test hydrogen locomotive and front-end loader vehicles

<u>Accomplishments</u>

- Develop data collection plan in collaboration with FTA for fuel cell buses
- Issued Solicitation, responses received and evaluated, and selections made in 2Q 2004
- Completed construction and initial testing of hydrogen locomotive in underground mines

Technology Validation Strategy

- To conduct learning demonstrations that emphasize co-developing hydrogen infrastructure in parallel with hydrogen fuel cell-powered vehicles to **allow a commercialization decision by 2015**.
 - Test, demonstrate, and validate optimum system solutions
 - Refocus Hydrogen R&D Program as appropriate

Controlled H2 Fleet & Infrastructure Solicitation: General Information

- Five year project 2004 2009
- Government/industry cost shared co-operative agreement
- \$150M –\$240M Government share subject to the appropriations process
 - \$190M announced
- Data from project to help refocus R&D projects
- 2 Generations of vehicles
- Cold climates to be included by 2nd generation
- Codes, Standards and Education integral to the success of the project
- Stationary facilities that co-produce electricity and hydrogen are encouraged

Controlled Fleet Performance Targets

(From solicitation RFP, Appendix C)

- 2008 Performance Targets
 - -FC Stack Durability: 2000 hours
 - Vehicle Range: 250+ milesH2 cost at station: \$3.00/kg
- 2015 Performance Targets
 FC Stack Durability: 5000 hours
 - Vehicle Range: 300+ miles
 - H2 cost at station: \$1.50/kg

	To verify
_	progress
	toward 2015
	targets

Subject of subsequent projects to validate 2015 targets

•

Successful Teams Announced

General Motors/Shell FC: GM Ford Motor Co./BP • Stations in FC: Ballard lacksquare- Washington, DC/Fort Stations in • Belvoir, VA – Detroit, MI – Detroit, MI – Orlando, FL – New York, NY – Sacramento, CA – Los Angeles, CA DaimlerChrysler/BP Air Products, FC: Ballard Conoco-Phillips, Texaco Energy Toyota, Honda, Stations in Systems/Hyundai Nissan, BMW – Los Angeles, CA FC: UTC Fuel Cells FC: UTC, others – Detroit, MI Stations in Stations in Sacramento, CA – Southern CA Northern CA – Northern CA – Southern CA Las Vegas, NV

Task 2 – Hydrogen Infrastructure (Objectives 2 & 3)

Description

- Design and construct early refueling facilities on integrated renewable/ fossil systems
- Document permitting requirements, lessons learned and safety plans
- Collect and disseminate operating data from different geographic regions

Accomplishments

- Completed 2 power park system designs and initiated equipment purchases. Third power park design in process (to be completed 6/30/04).
- Regenerative back-up power system installed at a casino and business plan developed for telecommunication industry
- Back-up power system with alkaline fuel cell installed and tested at a university (business plan in place to produce 50 units per month)

Task 3 – Natural Gas-to-H₂ "Refueling Stations (Objective 1)

By 2006, validate \$3.00/gge

Description

- Build and operate natural gas-to-hydrogen refueling station to collect data on reformer performance and reliability
- Validate the cost of H₂ produced including station operation and maintenance
- Disseminate data from refueling sites to verify component performance

Accomplishments

- Phase 2 subsystem development in progress on natural gas to hydrogen refueling station; verified \$3.00/gge
- Completed approval process for hydrogen refueling system installation @ LAX
- Integrated advanced compressor and reformer with existing transit company hydrogen production system @ Palm Desert, CA
- Initiated feasibility/system design of advanced fluid compressor

Task 4 – Co-Production of H₂ & Electricity (Objective 2)

By 2005, validate 8¢/kWh and \$3.60/gge

Description

- Collect data on reformer and fuel cell performance, reliability and cost
- Identify the operation and maintenance requirements for the Energy Station (Las Vegas)
- Determine the economics for a large co-production refueling station

Accomplishments

- Preliminary tests completed, verified \$3.60 gge and 8¢/kWh electricity production (2003)
- Initiated validation of reformer (2004)
 - Completed Phase 1 modifications of 30% hydrogen/70% natural gas trucks and bus with low exhaust emissions
 - Completed Phase 1 of hightemperature fuel-cell coproduction system study (documented station design for \$1.50/gallon gasoline equivalent hydrogen and 7¢/kWh electricity production by 2010)

Task 5 – Renewable H2ProductionSystems (Objective 3)

Description

- Validate integrated systems and their ability to deliver hydrogen
- Collect data to verify component performance

<u>Accomplishments</u>

- Initiated biomass pyrolysis system tests
- Awarded wind-hydrogen system cooperative agreement with Office of Science

Description

- Analyze early infrastructure deployment options
- Analyze advanced Power Parks for production of hydrogen and electricity

<u>Accomplishments</u>

- Early hydrogen infrastructure analysis in process
- Power Park validation analysis in process

Task 1Award cooperative agreements, operate vehicles,
and install and operate infrastructure

Complete hydrogen loader and locomotive test programs at 3 underground mines

Support FTA on California Fuel Cell Partnership Bus Program assessment

- Task 2Complete the installation and operation of 3power park projects and 2 back-up powerprojects
- Task 3Complete validation of 2 natural gas to hydrogen
refueling stations

Complete installation and operation of 3 advanced compressor and storage systems

- Task 4 Complete validation of Energy Station in Las
 Vegas (2005), testing of ten 30% hydrogen/70%
 natural gas light-duty vehicles and one bus, and
 make decision on high-temperature coproduction
 facility
- Task 5Complete biomass pyrolysis system tests (2004)
- Task 6Identify early infrastructure scenarios and definemarket applicability of power park concept

Task 1

Complete Locomotive and Underground Loader Vehicles Project Refueling Stations: NEXT Energy, Detroit, MI; Washoe County Transit, Reno, NV; New York State HI-Way Initiative; Florida Hydrogen Partnership; Photovoltaic Refueling Station NV Task 2 Hawaii Power Park Task 4 Chattanooga, TN Coproduction Facility Hawaii Energy Center **Test Centers:** University of Alabama, Birmingham

- Task 1. Vehicle Field Evaluations
 - Controlled fleet and infrastructure demonstration and validation project
 - California Fuel Cell Partnership (NREL)
- Task 2. Hydrogen Infrastructure
 - Power parks (Hawaii, Pinnacle West and DTE)
 - Back-up power plants (Apollo, Proton)
- Task 3. Natural Gas to Hydrogen Refueling Stations
 - Refueling stations (GTI and Air Products & Chemicals, Inc. [APCI])
 - Advanced compressors and storage (Praxair LAX, APCI, SunLine and Hydradix @ SunLine)

- Task 4. Coproduction of Hydrogen and Electricity
 - Las Vegas energy station (APCI, Plug Power, Collier Technologies)
 - High temperature fuel cell (APCI)
- Task 5. Renewable
 - Biomass reactor (Clark-Atlanta University)
- Task 6. Analyses
 - Infrastructure analysis (NREL)
 - Power park analysis (SNL)