

A. E. Lutz, C. J. Mas, J. O. Keller Combustion Research Facility Sandia National Laboratories Livermore, CA

Hydrogen Program Annual Review May 24, 2004

This presentation does not contain any proprietary or confidential information.

Objectives and Relevance

Objectives

- Develop a flexible system model to simulate distributed power generation in energy systems that use H₂ as an energy carrier
 - Power parks combine power generation co-located with a business, an industrial energy user, or a domestic village
- Analyze the performance of demonstration systems to examine the thermal efficiency and cost of both H₂ and power production

Deliverables

- A flexible, computational tool to provide simulations of a variety of energy systems that produce H₂
- Independent analysis of system performance
 - Thermodynamic efficiency
 - Cost of H₂ and electricity

Relevance to the Multi-year Program Plan:

- Technical Analyses
 - Analyze H₂ and electricity (e⁻) as energy carriers and evaluate potential synergies
 - Analyze advanced power parks for production of both H_2 and e^-
 - Determine the economics of H₂ and e⁻ co-production compared to stand-alone hydrogen facilities

Cost targets for distributed production from natural gas

- 700 kg/day of H_2 produced from 4\$/GJ gas & 0.07\$/kWh power
- Stations built at volume of 100/yr without sequestration
- 2005: 3.00 \$/kg (untaxed)
- 2010: 1.50 \$/kg (untaxed)

Approach

Software Design

Use Simulink software as platform for transient simulations

- Simulink provides:
 - Graphical workspace for block diagram construction
 - ODE solvers for integration of system in time
 - Quick-look output from simulation
 - Control strategies and iterative loop solutions

Create a library of Simulink modules to represent components

- Component models based on fundamental physics and chemistry to the extent practical
 - Coupled Chemkin software routines as Simulink functions
 - Thermodynamic properties of gas mixtures used in energy balances
 - Equilibrium composition used for catalytic reforming and combustion burners
- Library components can be quickly re-configured for new system concepts
- Generic components from library can be customized using data on the performance of specific unit

Project Timeline & Budget

		FY2004				FY2005			
ltem	Task	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4
1.	SunLine - simulation - comparison to data	*	•	*	٠				
2.	Las Vegas – simulation - comparison to data	*	•	*	*	*	•		
3.	HNEI system - simulation - comparison to data	*	*	*	•	*	*	*	•

- * Continuous development
- Milestone for completion

Budget:

- FY03 = 250 K\$
- FY04 = 250 K\$

Progress: Library of Simulink modules

Reformers

- Steam methane T determined by internal energy balance
- Autothermal (partial oxidation) optimize air/carbon to balance energy

Electrolyzer

- Steady-state model uses first principals and experimental data
 - Energy balance including phase change of water in the electrolyzer
 - Mass balance including separation of water vapor from the hydrogen product stream
 - Simulates performance versus stack operating conditions and physical characteristics

Fuel cell

- PEMFC efficiency versus power scaled to data
- SOFC sub-model for kinetics of operation (Kee et al., Colorado School of Mines)

Economic analysis modules

- Capital cost spread over life using capital-recovery-factor
- O&M costs per year by component

Other components:

- Compressor multi-stage with intercooling, isentropic efficiency
- High-pressure storage vessel real-gas equation-of-state
- Photovoltaic Solar Collector

Sandia National Laboratories

Cooperative Efforts

Collaborations:

- U C Berkeley Energy and Resources Group (ERG) Tim Lipman
 - Carl Mas masters thesis: "H₂ as an Energy Carrier: System Modeling in Distributed H₂ Generation"
- City of Las Vegas Refueling Station
 - Air Products Mark Wait, Greg Keenan, Dave Guro
 - Plug Power Bob Sinuc, Rob Dross
- SunLine Transit Agency Bill Clapper, Polo Deltoro
- Hawaii Natural Energy Institute (HNEI) Mitch Ewan, Richard Rocheleau
- Colorado School of Mines Bob Kee, Kevin Walters

Publications:

- Lutz, A E, Bradshaw, R W, Bromberg, L and Rabinovich, A, "Thermodynamic Analysis of Hydrogen Production by Partial Oxidation Reforming," *Int J of Hyd Engy*, 29 (2004) 809-816.
- Lutz, A E, Bradshaw, R W, Keller, J O, and Witmer, D E, "Thermodynamic Analysis of Hydrogen Production by Steam Reforming," *Int J of Hyd Engy*, 28 (2003) 159-167.
- Lutz, A E, Larson, R S, and Keller, J O, "Thermodynamic Comparison of Fuel Cells to the Carnot Cycle," Int J of Hyd Engy, 27 (2002) 1103-1111.

Simulation of DOE demonstration systems

City of Las Vegas (CLV) refueling facility

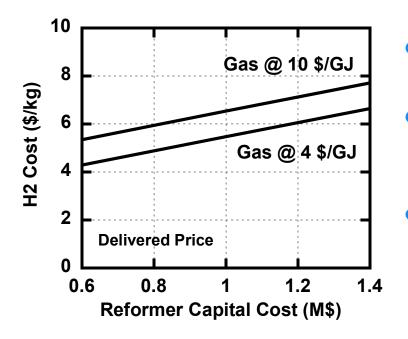
- Co-produces H₂ and electricity
- H₂ Generator with Steam-methane reformer (SMR)
 - sized for 50 kW fuel cell with extra for vehicle refueling

Watervliet Arsenal fuel cell demonstration

- 5kW fuel cell units with autothermal reformers
- Data collected over a full year's operation

Hawaii Natural Energy Institute

- PV arrays will power Stuart electrolyzer
- H₂-ICE generator and fuel cell will power building


SunLine Transit

- H₂ production from:
 - Electrolyzer powered by PV arrays
 - HyRadix autothermal reformer
 - H₂ stored for vehicle refueling

Engineering/economic analysis of hybrid power system at CLV

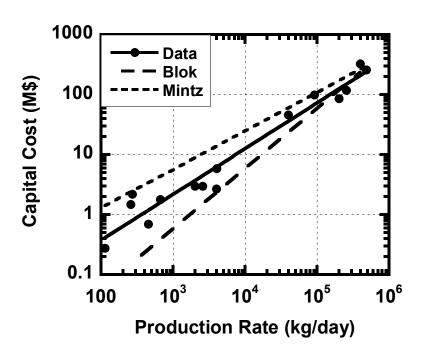
- H₂ Generator (SMR) feeds fuel cell and compressed storage
 - Reformer: ~150 kg/day at 68% thermal efficiency (H₂/CH₄ on LHV basis)
 - Compressor: used 82% efficiency from MYPP target
- Hybrid system efficiency = 47%
 - Electricity + Compressed H₂
 - Gas-to-electric efficiency = 29%

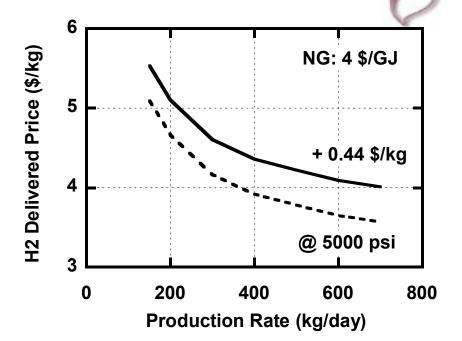
Economic parameters

- 10 year life at 10% interest
- Parameter studies:
 - Reformer capital cost
 - Natural gas price
- H₂ cost includes
 - Compressor: capital + power at 8¢/kWh

SMR

FC


e-

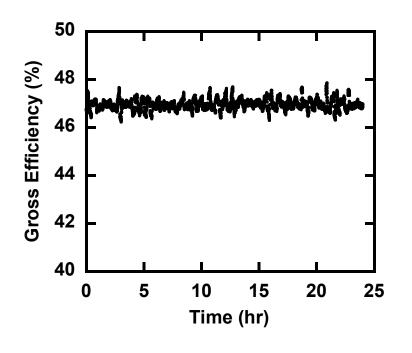

 H_2

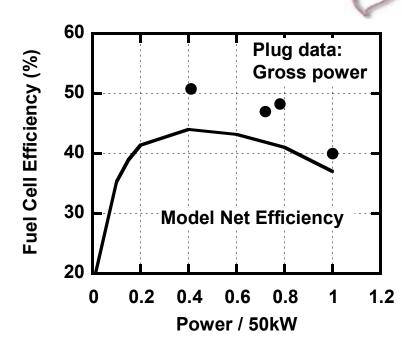
- Refueling station: 0.92\$/kg (MYPP target)

Cost of H₂ projected for a refueling station

- H₂ production rate has non-linear effect on cost
- Use literature correlation to simultaneously vary reformer capital cost & production rate
- Add 0.44\$/kg for refueling station
 - From DOE 2010 target costing

- To meet DOE targets for distributed reforming (4\$/GJ gas)
- 2005: 3\$/kg will need 700 kg/day reformer installed for 2.5M\$ instead of 3.4M\$
- 2010: 1.50\$/kg requires changing the capital cost vs production rate relation


Sandia National Laboratories Combustion Research Facility

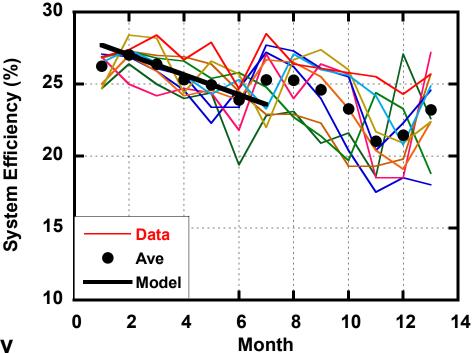


Sandia National Laboratories Combustion Research Facility

- Model uses CLV operation data
 - Adjusted efficiency to measurement: 47% for 36kW gross DC power out
 - Assume a 10% reduction to account for parasitics & power conditioning
 - Net efficiency for model = 42%

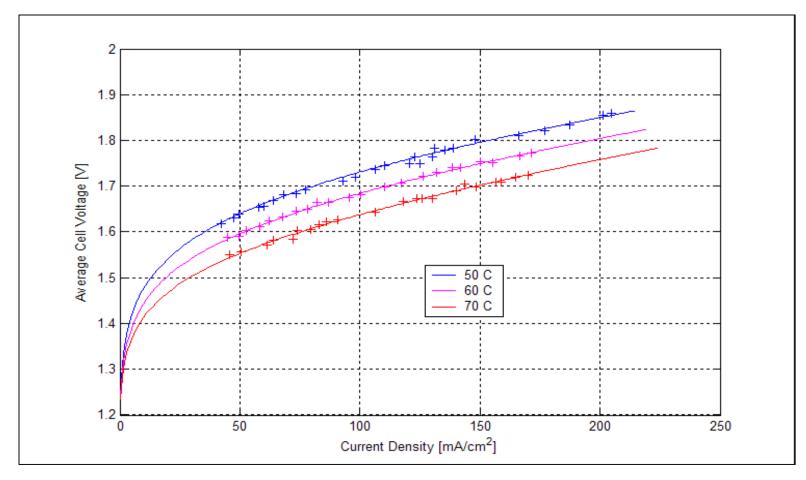
Operation data from Plug
Power (with permission)
Steady-state operation at 36 kW

Cost of electricity for hybrid system

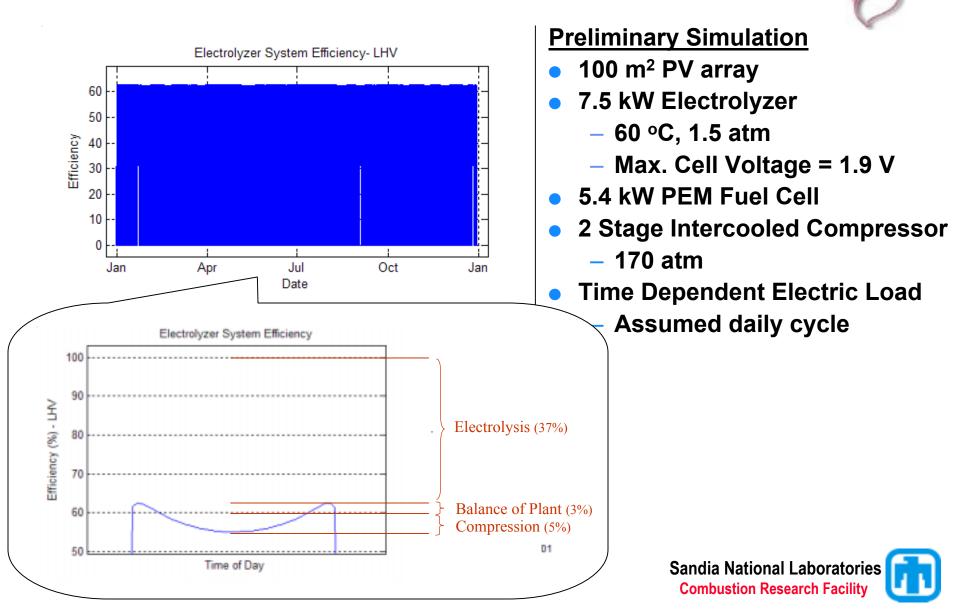

Economic assumptions

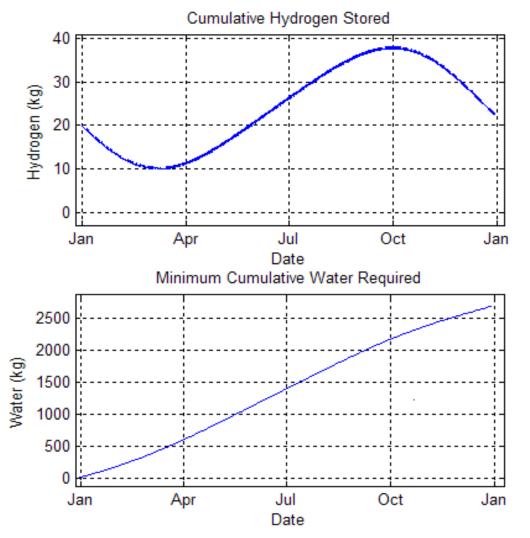
- Maintenance includes yearly stack replacement
 - Vary O&M over range 20-50% of original capital cost
- H₂ at 4.81\$/kg from reformer at nominal conditions:
 - 150 kg/day production rate
 - 6 \$/GJ natural gas

Analysis of integrated reformer/fuel cell


- Comparison to data from Watervliet Arsenal (DoD demonstration)
- Plug Power 5kW units operated at 2.5 kW
- Net thermal efficiency
 - Natural gas to electricity
 - Varies with age of stack
 - New: 27%
 - 6 months: 24%
- Autothermal reformer
 - Assume 1073 K
 - Gas-to-H₂ efficiency = 63%
 - FC exhaust heats reformer
- Simulation of FC efficiency
 - Adjusted for dilute mix & decay
 - 30% efficient at 83% utilization

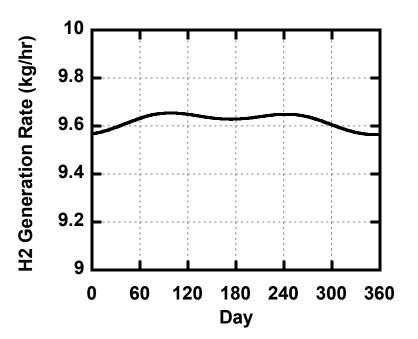
Alkaline Electrolyzer Parametric Model


• Temperature Dependent V-I Curve fit to Experimental Data from the PHOEBUS plant in Julich, Germany.

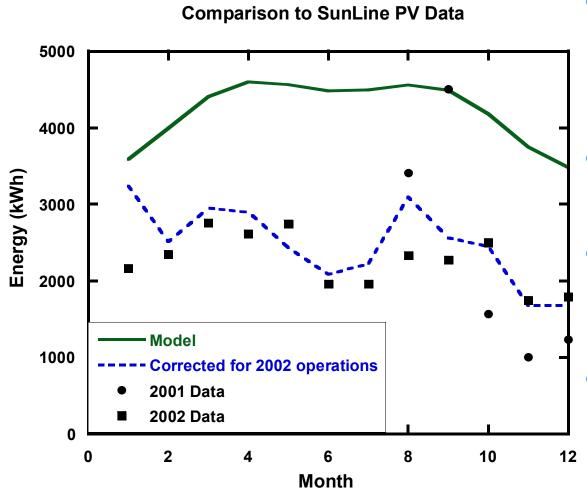

Sandia National Laboratories Combustion Research Facility

HNEI Solar-Hydrogen System Simulation

HNEI Solar-Hydrogen System Simulation



Preliminary Simulation


- Annual H₂ storage from solar energy
 - FC daily load cycle is constant during year
 - H₂ storage varies with seasonal solar insolation
 - Model could be used to optimize PV array size
- Annual water consumption
 - Cumulative during year's seasonal variation

- New HyRadix autothermal H₂ generator currently in test-out phase
 - 100 Nm³/hr capacity
 - Preliminary simulation shows seasonal H₂ generation when combined with existing PV system
- SunLine expects new buses to run on H₂-CNG blend & pure H₂ in next year

Simulation of SunLine PV collector

- Model simulation
 - Run yearly variation
 - Integrate daily collection
 - Sum monthly to compare to SunLine data

Solar radiation model

- Analytic function of longitude, latitude, altitude
- PV panel model
 - Area = 360 m², slope 23°
 - Adjust solar-electric conversion efficiency 7 %
- Correct monthly sums to SunLine's operations
 - Operating days / month
 - Sunny days / month

Response to FY 2003 review

FY2003 Ranking

Project ranked 3rd in Technology Validation category with score 3.55 / 4.0

• FY2002 reviewer's suggestion:

"We encourage further collaborations and modeling of actual power park sites such as Las Vegas, SunLine, etc."

• Collaborations with power park sites:

- 1. Continuing collaboration with SunLine transit, City of Las Vegas, Air Products, Plug Power
- 2. Established collaboration with HNEI to simulate the power park being constructed at Kapolei Hale city hall

<u> Task 1</u>

Continue to build and refine the component library

- Add fundamental physics to fuel cell model: polarization curve, water management, parasitic losses
- Wind turbine generator (for SunLine facility)
- H₂-ICE generator (for HNEI facility)
- H₂ storage as liquid or metal hydride

<u>Task 2</u>

Collaborate with researchers at existing power parks

SunLine, City of Las Vegas, HNEI, and other DOE sites

<u>Task 3</u>

Perform long-term studies of distributed H₂ production

• Expand existing analysis to examine thermodynamic availability

