

Innovation for Our Energy Future

2004 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Review

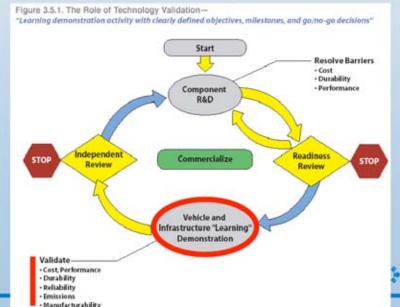
Controlled Hydrogen Fleet & Infrastructure Analysis

Keith Wipke NREL May 26, 2004

This presentation does not contain any proprietary or confidential information

NREL is operated by Midwest Research Institute - Battelle

Project Objectives


- 5-year technology validation objective (MYPP): By 2008, validate H2 vehicles with:
 - greater than 300-mile range
 - 2,000-hour FC durability
 - \$3/kg H2 production cost
- Objective of this validation project is assist DOE in demonstrating use of FC vehicles and H2 infrastructure under real-world conditions, using
 - Multiple sites, varying climates, variety of sources for hydrogen, including renewables
- Primary activity over last year was to support DOE solicitation process and prepare for post-award work
- Future activities will include analyzing data from vehicles and infrastructure to obtain maximum value for DOE and industry from this "learning demonstration"

Definition and Role of Technology Validation

Definition:

- Confirmation that component technical targets for a given technology have been incorporated into a complete system solution, and
- that system performance and operation are met under realistic operating scenarios

3

Budget

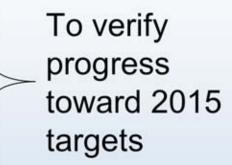
Current FY04 funding: \$630 K total

 \$15K subcontract with Battelle for data analysis planning support

Responses to Previous Year Reviewer's Comments

- This is the first year this project is being reviewed
- No reviewers comments from previous year

Technical Barriers and Targets


- Key DOE Technology Validation Technical Barriers addressed by this project:
 - A. Vehicles lack of sufficient H2 vehicle data
 - B. Storage not yet providing necessary 300+ mile range
 - C. Hydrogen Refueling Infrastructure cost and availability
 - E. Codes and Standards lack of adoption/standardization
 - F, G, H. Hydrogen Production from fossil, nuclear, renewable – cost is major barrier
- Technical Targets: Technology Validation does not have its own component technology targets
 - Component technical targets are verified under real-life conditions as part of an integrated system
 - After they've already been verified at the component level in laboratory
 - However, solicitation does have performance targets...

Controlled Fleet Performance Targets (From solicitation RFP, Appendix C)

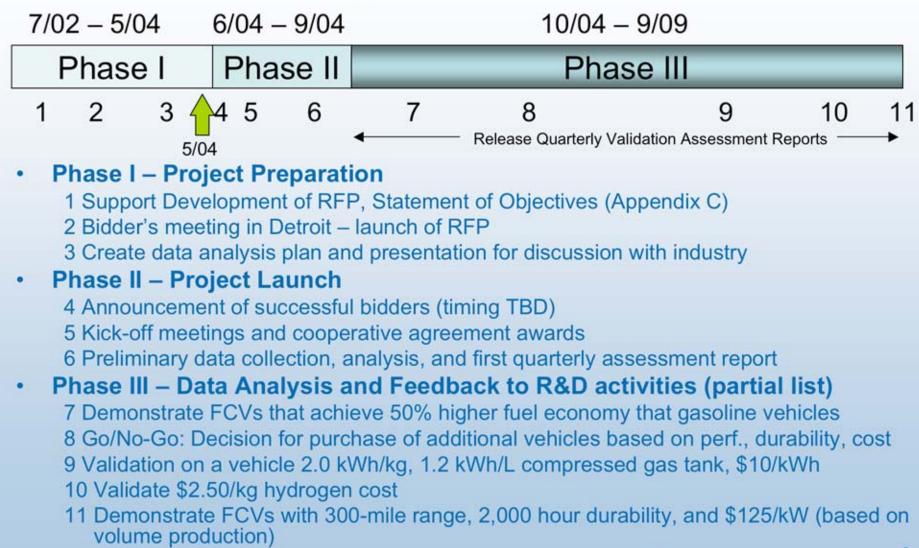
- 2008 Performance Targets
 - FC Stack Durability: 2000 hours
 - Vehicle Range: 250+ miles
 - H2 cost at station: \$3.00/kg
- 2015 Performance Targets

 FC Stack Durability: 5000 hours
 Vehicle Range: 300+ miles
 - H2 cost at station: \$1.50/kg

Subject of subsequent projects to validate 2015 targets

6

Overall Approach


- Provide technical support to DOE for solicitation RFP process:
 - "Controlled Hydrogen Fleet & Infrastructure Demonstration and Validation Project"
- Plan NREL/DOE data analysis activities
- Investigate hydrogen infrastructure
 transition pathways through analysis

Project Safety

- Solicitation bidders required to include in their proposal:
 - Preliminary Failure Modes and Effects Analysis (FMEA) on the project
 - Brief example of safety assessment
 - Detailed outline of Risk Mitigation Plan
 - Description of how safety performance will be measured and monitored
 - Detailed outline for Communication Plan, including reportable accidents, management response, and independent reviews
- Safety accounted for 20% of proposal evaluation score
- RFP included "Guidance for Safety Aspects of Hydrogen Projects" for reference

Project Timeline

Overview of Technical Accomplishments/Progress

- Helped formulate plans for solicitation
- Assisted in preparation of technical details of RFP Statement of Objectives (Appendix C)
- Performed technical review of solicitation proposals (AOP milestone)
- Completed draft validation project technical data analysis plan and sample data flows
- Performed preliminary infrastructure analysis

Accomplishments

Provided Content/Review for RFP Statement of Objectives

- 8 tables
- Footnotes to clarify

DRAFT FINAL CONTENT SUBJECT TO CHANG

APPENDIX A

Statement of Objectives Controlled Hydrogen Fleet and Infrastructure Demonstration

A.1.0 Background

The use of fuel cell technology with hydrogen as the energy carrier off viable option to reduce dependence on imported petroleum, develop de improve fuel efficiency while reducing greenhouse gas emissions, and a diverse source of energy feedstocks. It also offers the opportunity to embrace both transportation and electric generation sectors.

In November of 2002, Energy Secretary, Spencer Abraham, announce *Energy Roadmap*, a document designed to ensure a more secure and cleaner energy round to America. The Roadmap provides a blueprint for the coordinated, long-term, public and priva efforts required for hydrogen energy development. These requirements include:

- · Improved fuel cell durability
- · Decreased cost of fuel cell stack
- · Enhanced infrastructure/vehicle systems integration
- · Focused demonstrations to showcase vehicle/infrastructure capabilities
- · Accelerated development of codes and standards
- · Public policies to educate the public about hydrogen as a fuel

Phone Station and the second second

A.3.0 Project performance measures

Applicants shall provide summaries of the vehicle, site, and energy parameters, as well as energy production (optional) test plans. Tables 1 - 6 below and the accompanying narrative summarize the performance measures.

A.3.1 Performance Measures

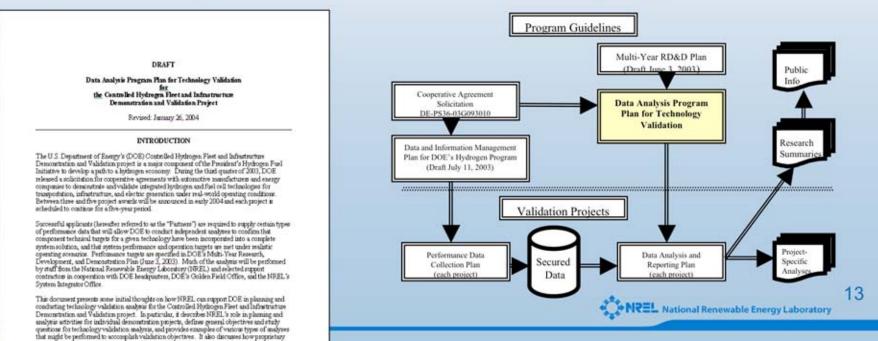

Table 1. Vehicle Performance Measures

Category	Performan ce Measure	Units	Baseline Benchma rk (Current)	2006 Perfor manc e Targe ts	2008 Perfor manc e Targe ts	Comments
Operations	Fuel Economy (a)	MPGG E *	50 (fuel cell vehicle)	50	60	Use draft SAE J2572 and draft EPA fuel economy test procedures. Overall testing may include FTP75, HWYFE,

Vehicle Component	Required Data	Comments		
Dynamometer	Testing (a)			
Fuel Cell Stack	 Stack voltage, current Anode inlet and outlet temperature and pressure Cathode inlet and outlet temperature and pressure Hydrogen feed and recirculation rates Cathode air feed rate Humidification levels for cathode and anode feed gases 	Data to be obtained on continuous basis.		
Fuel Cell System Balance-of-	 Power consumption by air compressor or blower radiator/condenser fan(s) 	Same as above		

Accomplishments Controlled Fleet Solicitation

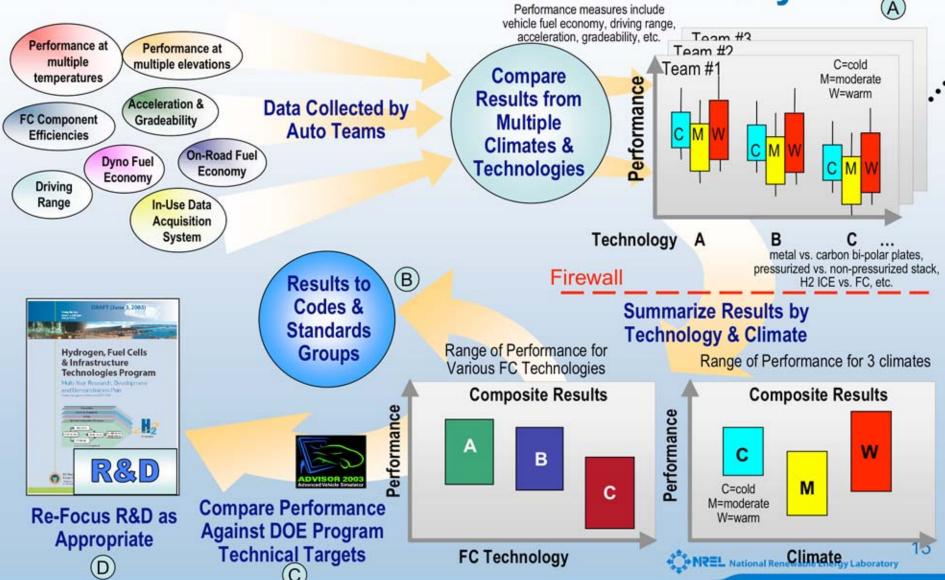
- Reviewed all "Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project" Proposals in October
- Provided detailed feedback on proposals
- Created maps of existing H2 infrastructure used in discussion of proposed refueling stations



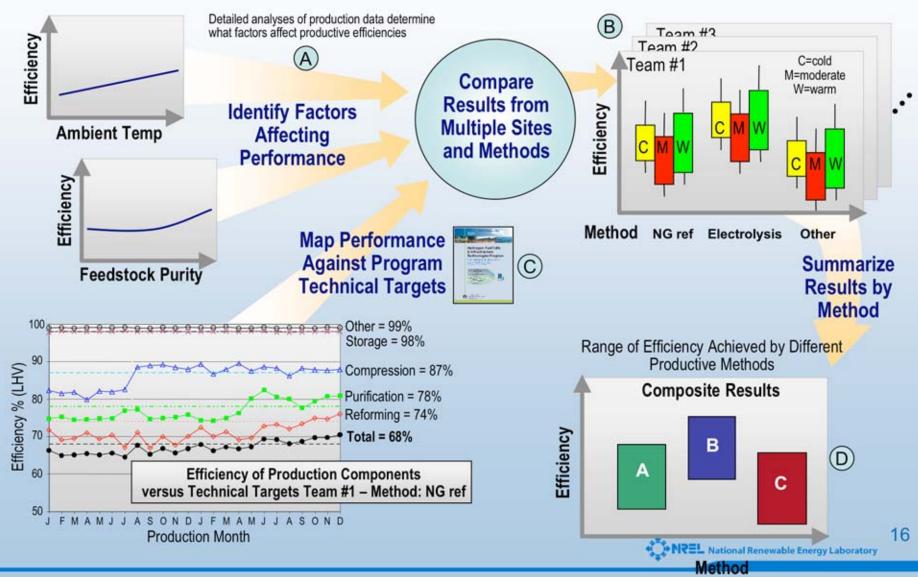
12

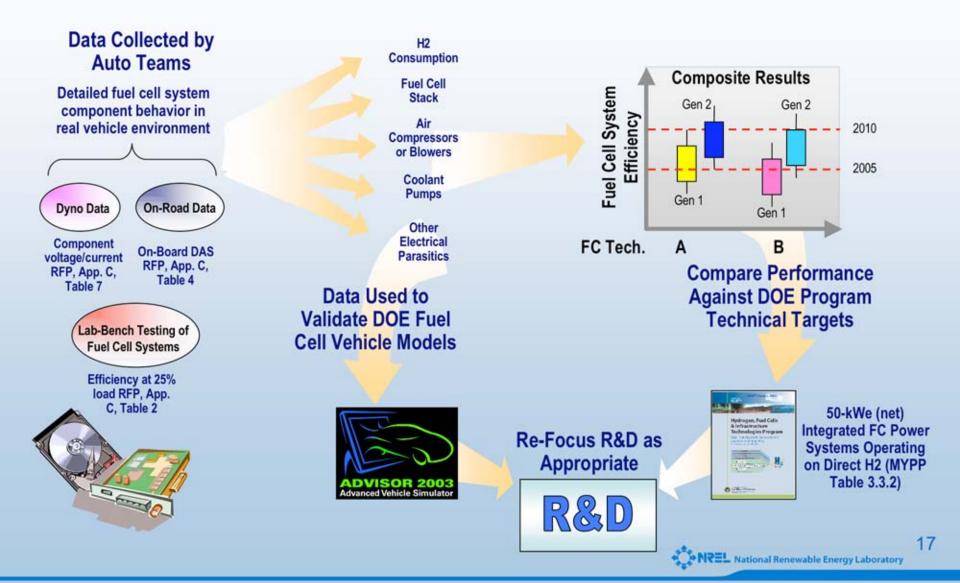
Accomplishments Completion of Draft Data Analysis Plan

- Prepared draft NREL document "Data Analysis Plan for Technology Validation for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project"
- Served as starting point for discussion about how the data being collected by industry will be used to provide significant value to the HFCIT program



Data Analysis Approach (Fuel Cell Vehicles)


- A. Identify significant factors affecting vehicle performance from collected data
- B. Provide processed data for development/verification of codes and standards
- C. Measure progress compared to research technical targets (MYPP, solicitation targets)
- D. Identify possible technical areas of future research within Program from results -technology gaps and research opportunities


Overview of Technology Validation Hydrogen Fuel Cell Vehicle Performance Analysis

Overview of Technology Validation Hydrogen Production Analysis

Specific Data Analysis Example Fuel Cell Component and System Efficiency Evaluation

Accomplishments Infrastructure Transition Analysis

Goal: Identify near term strategies for developing an H2 infrastructure

- Estimate refueling station requirements and costs to facilitate vehicle deployment
- Identify number and optimal locations for stations using GIS capabilities
- Coordinating efforts with H2 analysis activities:
 - H2A
 - Systems Integration

Accomplishments Infrastructure Transition Analysis

- Performed spreadsheet analysis to allow rough calculations for the range of infrastructure needs based upon various assumptions (extension of GM work)
- Conducted literature search on infrastructure activities
- Identified most traveled interstate routes based on GIS data

Urban Analysis	- GM Methodology					A Second Second
	Percentage Of Population	Number of MSA	Mega - 240 Stations	Large - 120 stations	Mid - 60 Stations	Small - 50 Stat
GM	68	100	2	â	49	40
NREL A	57	50	2	9	39	0
NREL B	71	125	2	9	49	65
NREL C	50	22	2	9	21	0
Alternate	Input	Input	Input	input	Input	Input
Urban Analysis	MSA Specific DOE Analysis					
	Percentage Of Population	Number of MSA	Urban Stations			
Clean Cities - 10	61	82	4659			
Clean Cities - 3	61	82	61347			
Station Analysis						
	Highway Stations	Urban Stations	Total Stations			
GM	5200	6500	11700			
NREL 1A	1300	3900	5200			
NREL 2C	2600	2820	5420			
NREL 1B	1300	7750	9050			
NREL 1; CC10	1300	4659	5959			-
NREL 1; CC3	1300	61347	62647			
Alternate	input	Input	0			-

Accomplishments Infrastructure Transition Analysis

Interim Results:

- Based upon spreadsheet analysis, supported by U. of Michigan paper, strategy of placing refueling stations along major traffic routes is best
- GIS is necessary to identify strategic placement of stations to provide best coverage

Interactions and Collaborations

- Met with all major auto OEMs and energy companies in helping DOE to craft objectives and scope of controlled fleet solicitation
- Open discussion with industry on solicitation facilitated by bidder's meeting in Detroit (3/03)
- Interactions on transition analysis with UC Davis and University of Michigan

Interactions and Collaborations

Project Planning Input Gathered from Multiple Organizations

Auto Manufacturers

Ford DCX GM Toyota Hyundai USCAR

Collaborations

CA Fuel Cell Partnership NEXT Energy Building Owners and Managers Assoc. Altarum Teamworks CUTE Europe SCAQMD NYSERDA Albany- Nanotech

Fuel/Storage/FC Suppliers

Chevron-Texaco PDVSA Citgo Exxon Mobil Phillips Union Oil BP Shell Hydrogen Stuart Energy PraxAir General Atomics Corp MTI-Micro Fuel Cells Inc. **UTC Fuel Cells H-Power Corp Plug Power Corp Ovonics**

Learning Facilities

Virginia Technical Institute SUNY-Albany Military TARDEC/NAC

Future Work

Controlled H2 Fleet & Infrastructure Project

- Remainder of FY04
 - Wrap-up transition analysis work and document findings in report (mapping and vehicle simulation)
 - Enter Phase II of project (post announcement)
 - Actively participate in industry team kick-off meetings, discussions on data collection methods, and early applications/analyses of data
 - Begin quarterly Validation Assessment Reports
- FY05 and beyond (Phase III):
 - Compare technical progress to program objectives
 - Actively feed findings from project back into HFCIT program R&D activities ("learning demonstration")
 - Provide quarterly Validation Assessment Reports to report on technology and project progress

Team Acknowledgements

- Aaron Brooker (vehicle simulation)
- Sig Gronich (DOE program mgr)
- Deborah Kielian (FY03 project lead)
- Margo Melendez (transition analysis)
- John Orban (Battelle, analysis plans)
- Liz Brady Sabeff (GIS/mapping)
- Holly Thomas (codes and standards)