AIR AIR PRODUCTS

This presentation does not contain any proprietary or confidential information.

Hydrogen. Fueling a Cleaner Future.

Validation of an Integrated System for a Hydrogen-Fueled Power Park

Greg Keenan Air Products and Chemicals, Inc.

Merit Review and Peer Evaluation 26 May 2004

Objectives (FY04)- Phase 1B

- Complete a feasibility, technical, and economic analysis to determine the optimal fuel cell system for the co-production of power and hydrogen from natural gas (energy park)
 - Reformer / PEM System
 - High Temperature Fuel Cell (HTFC)
- Optimize the system for lowest total energy price
- Develop a cost estimate to demonstrate a prototype natural gas based energy park at a suitable site

PowerPark Concept

High Temperature Fuel Cell (HTFC) Co-production

Potential Co-Production Efficiency (LHV): 55 - 60%

Benefits of HTFC Co-Production

- High efficiency
- Low emissions
- Potential to use waste hydrocarbons as energy source
- Multiple product slate (power, hydrogen, & heat)
 - Improves capital utilization
 - More flexible pricing options- 2 or 3 Levers
- Fuel cell / fuel cell hybrid option
 - Efficient cycle (potential for > 60%)
 - No turbine- potential for higher reliability and less maintenance

Distributed Power and Hydrogen for Consumers...

FuelCell Energy DFC-300

The Plaza at PPL Center, Allentown

Total Project Budget: – \$1.391 MM

Cost Sharing: DOE - \$0.695 MM APCI and Partners – balance.

FY2004 Funding

\$100 k Obligated by DOE

Technical Barriers and Targets

DOE Technical Barriers

- Technical Validation (Section 3.5.4.2 of HFCIT Program Report), Task #4.
 - B. Storage
 - C. H₂ Refueling Infrastructure
 - I. Hydrogen and Electricity Coproduction

DOE Targets

- H2 Production (Table 3.1.2 of HFCIT Program Report), Task #3.
 - Cost of H₂:
 - -\$3/kg 2005
 - -\$1.50/kg 2010

Approach: Co-production

Analysis

Phase 1B- Process and Economic Analysis

3 HTFC technologies evaluated

- 2 Solid Oxide Fuel Cells (2 different geometries)
- 1 Molten Carbonate Fuel Cell
- Each HTFC technology was matched with the appropriate purification technology selected by Air Products

• HTFC Vendors Provided:

- Fuel Cell Performance Projections
- Fuel Cell Cost Projections
- Flow Diagrams
- Process Data
- Air Products Provided:
 - Purification design, performance and cost projections
 - Overall process and economic analysis

Safety Reviews and Training

- APCI has >40 years experience in safe design, construction, & operation of H2 plants.
- Leader in Management of Change, Near Miss Reporting, and Quantified Risk Assessment Procedures
- PHR: Phase 2
- HAZOP: Phase 3
- All applicable industry codes will be followed
- APCI participates in SAE, ICC, ISO, HFPA, IETC, and EIHP2 committees

Project Timeline

Phase 1A Conclusions- FY03

Small Reformer/PEM System (w/ current PEM technology)

- Low commercial potential for distributed continuous power generation with natural gas as a feedstock.
- Don't recommend a Phase II demonstration with PEM

PEM Niche Market Opportunities: Pipeline/Offgas (Back-up)

- Economic in limited geographic region
- Potential in non-attainment areas (low emissions)
- Low noise
- Spinning reserve
- Co-production of Power and Hydrogen using High Temperature Fuel Cells
 - High temperature fuel cells have greater potential than PEM for distributed power
 - Energy Station- Co-production of Hydrogen and Power
 - Distributed Generation- Hybrid Fuel Cell Cycle
 - Recommend further review- Phase 1B

Phase 1B Conclusions- FY04

- High temperature fuel cells configured to co-produce hydrogen have the ability to meet the DOE hydrogen targets as specified in the multi year plan while producing power for less than 0.10 \$/kW
- Both molten carbonate and solid oxide fuel cells can be designed for co-production
 - Co-production efficiencies were similar- 55%-60% (LHV)
 - Both have the potential to meet the DOE targets while producing power for less than 0.10 \$/kW
- Engineering development required for co-production
 - Recovering and conditioning off-gas
 - Purification of hydrogen
 - System integration
 - Optimization of co-produced products
- Recommend proceeding with engineering development, design, and demonstration of the economic viability of a combined electric power and hydrogen production application

HTFC Co-Production Economics

	2005	2010	2015
Hydrogen, kg/day*	690	690	690
Net Electricity, kw	>1.5 MW	>1.5 MW	> 1.5 MW
HTFC Cost, \$/kW AC w/o H2	2250	1200	800
Natural Gas Costs, \$/mmbtu*	4.00	4.00	4.00
Production Volume, units/year*	100	100	100
Fueling Utilization*	90%	90%	90%
Capital Factor*	0.11	0.11	0.11
Base Energy Price			
Hydrogen Price, \$/kg	2.97	2.15	1.88
Power Price, \$/kwh	0.07	0.05	0.05
Fueling Scenario			
Hydrogen at the Pump, \$/kg*	3.00	1.50	1.50
Station Allocation, \$/kg*			
Compression, \$/kg H2*	-0.29	-0.24	-0.24
Storage & Dispensing, \$/kg H2*	-0.19	-0.11	-0.11
Hydrogen Production Price, \$/kg	2.52	1.15	1.15
Power Price, \$/kwh	0.08	0.07	0.06

*Assumptions from the DOE Multi-Year Research, Development and Demonstration Plan, Table 3.1.2, page 3- 10, Draft 6/3/03.

Future Work: Required Engineering Development

- HTFC modifications to recover off-gas
- Off-gas conditioning
- Hydrogen purification
- System integration
- Steady state vs. dynamic response
- Optimization of co-produced products

Development work applicable to both MCFC and SOFC

Proposed Forward Program

 Develop and demonstrate the technical and economical viability of a HTFC co-production system.

Program Forward

- HTFC Partner Selection
- Phase 2: Preliminary Design, Engineering Development, Firm Bid Estimate, and Site Selection
- DOE/APCI GO / No-GO
- Phase 3: Detailed Design and Construction
- Phase 4: Operation, Testing, Data Collection

"If high temperature fuel cells can be made into successful commercial products, hydrogen could be separated and purified from the flue gas at a relatively low cost, just the incremental cost of the purification and separation system. This could yield overall system efficiencies of 90% in converting natural gas to usable energy...Solid Oxide fuel cells might achieve a cost of hydrogen of 2.00 \$/kg."

> -Joseph Romm, "The Hype About Hydrogen", Island Press, 2004, page 123.

Thank you

Special Thanks to:

DOE- Chris Bordeaux, Sig Gronich

Air Products- Todd Carlson, Dave Guro, Rick Klippstein