Hydrogen, Fuel Cells & Infrastructure Technologies Program 2005 Annual Review

Washington, DC, May 23-27, 2005

Non-Precious Metal Catalysts

Eric Brosha, Jong-Ho Choi, John Davey, Fernando Garzon
Christine Hamon, Barbara Piela, John Ramsey, Francisco Uribe

and

Piotr Zelenay

Los Alamos National Laboratory Los Alamos, New Mexico 87545

DOE Program Manager: LANL Program Manager:

Nancy Garland

Ken Stroh

Project ID FC - 11

This presentation does not contain any proprietary or confidential information

Project Objective & Focus

Objective:

Develop low-cost non-precious metal oxygen reduction reaction (ORR) catalyst for the polymer electrolyte fuel cell (PEFC) cathode with similar activity and performance durability to the currently used noble-metal based cathode catalysts.

Focus:

- Transition metal macrocycles (e.g. pyrolized TPP & TMPP chelates of Co & Co/Fe) – advanced phase; progress to date summarized in this presentation
- Metal chalcogenides (e.g. Ru-based and Ru-free catalysts) early phase, very promising initial results
- Metal oxides (e.g. NiO, Co_2O_3 , NiCoO₂, perovskitic LaSrCo oxides, CuMn oxides) part of future research

Funding & Milestones

Funding:

FY 2004 (started January 29, 2004) **FY 2005**

\$118K \$350K

Project reviewed for the first time

2004 & 2005 Milestones:

- Develop techniques for electrochemical characterization of nonprecious metal catalysts under conditions relevant to fuel cell operation. – June 2004
- Perform initial electrochemical/pH stability experiments on pyrolized macrocycle transition metal (PMTM) catalysts. March 2005
- Identify active reaction site(s) for oxygen reduction on pyrolized N_4 -chelate electrocatalyst in polymer electrolyte fuel cell.
 - September 2005

Selected Collaborations & Interactions (c)

Transition Metal Macrocycles

University of New Mexico, Professor Plamen Atanassov – synthesis and supply to LANL of Co, Co/Fe porphyrin catalysts for the presented research; half-cell performance screening; TEM catalyst characterization; more

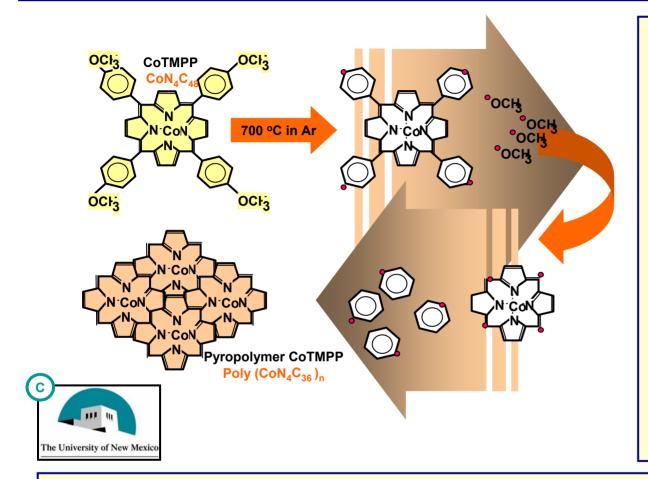
Metal Chalcogenide Catalysts

Université de Poitiers, Professor Nicolas Alonso-Vante – synthesis, initial electrochemical & non-electrochemical characterization of chalcogenide catalysts

University of Illinois, Professor Andrzej Wieckowski – alternative method of catalyst synthesis, half-cell performance screening

• Non-Precious Metal Catalysts for Portable Systems

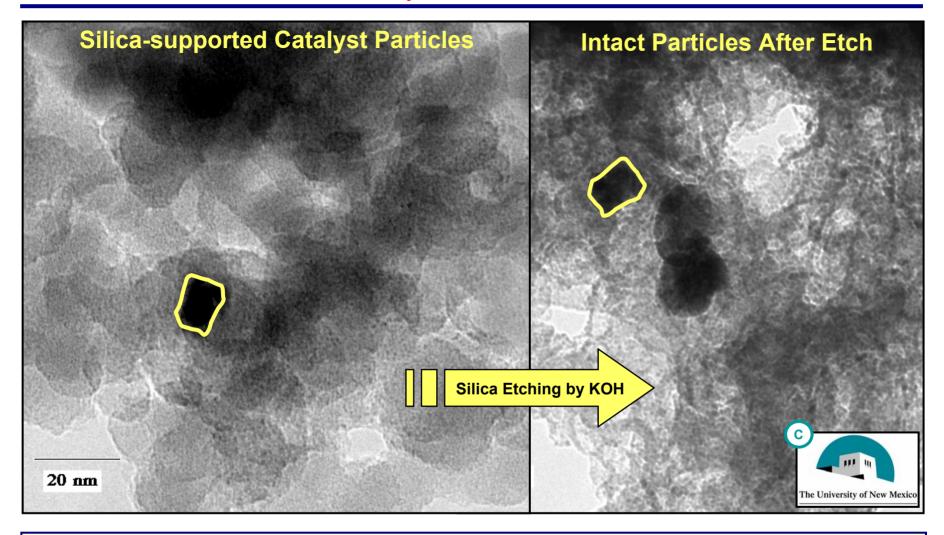
Mesoscopic Devices, Inc., Valerie Hovland – catalysts, membranes, MEAs, and feed schemes for mixed-reactant fuel cells


Activated Polyoxometalates

OSRAM SYLVANIA, Joel Christian - PEFC activity evaluation by LANL

Pyrolysis of Metal Porphyrins

A Major Chemical Transformation



- (1) Heat treatment: 18 min - 5 hours: 300°C -1000°C, inert gas.
- (2) Increased ability of the products to decompose peroxide.
- (3) Effective peroxide reduction → (i) protection of the catalyst against degradation, (ii) shift in the ORR mechanism towards the 4e- pathway.
- (4) Degradation of the original structure and formation of highly condensed phases at high temperatures (T > 400°C).

Pyrolysis products: (i) unchanged macrocycle, (ii) polymers with different degree of polymerization, (iii) smaller compounds of N_4 structure, (iv) products consisting of C, N, and metal atoms, (v) metal oxides, (vi) metal carbides, and (vii) metal phases.

High-Resolution Transmission Electron Microscopy Key Role of Silica

Well-dispersed, porous and "self-supported" pyropolymer left after KOH etch

Experimental

Cathode, Anode, Fuel Cell Testing

- Catalyst synthesis (University of New Mexico)
 - Silica-supported CoTPP, CoTMPP, Co/Fe(1:1)TPP *
 - Pyrolysis at 600 700°C in inert gas atmosphere
 - Silica support etched in KOH
- Membrane-electrode assembly (5 cm²)

Cathode: 2 mg cm⁻²; pyrolized-porphyrin catalyst mixed with carbon

black and recast Nafion®

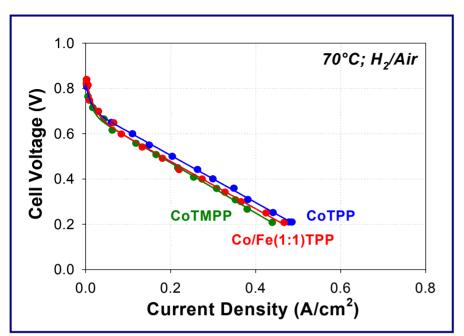
Anode: 6 mg cm⁻² Pt black

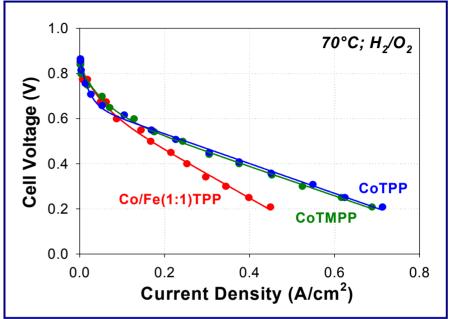
Membrane: Nafion® 117

Fuel-cell test conditions

Cathode: Air or oxygen, 30-psig or 0-psig backpressure

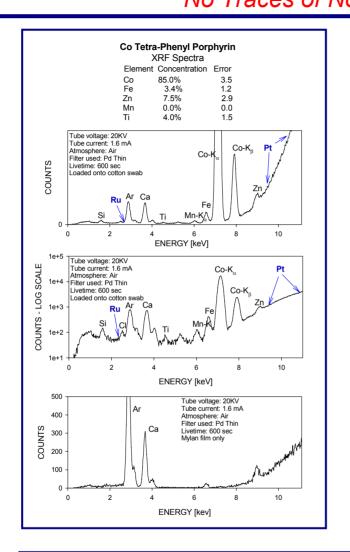
Anode: H_2 , 30-psig or 0-psig backpressure

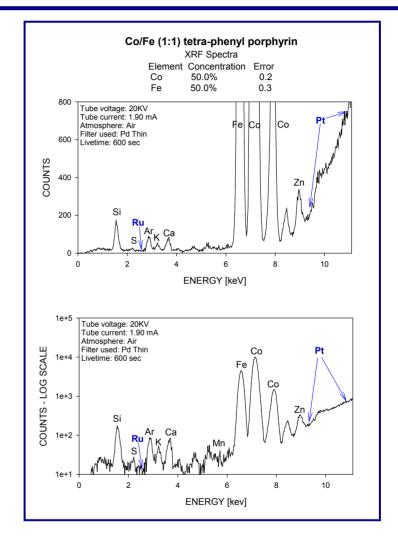

Cell temperature: 30°C, 50°C, 70°C, and 80°C


^{*)} TPP = tetraphenyl porphyrin; TMPP = tetramethoxyphenyl porphyrin

Performance at a Glance

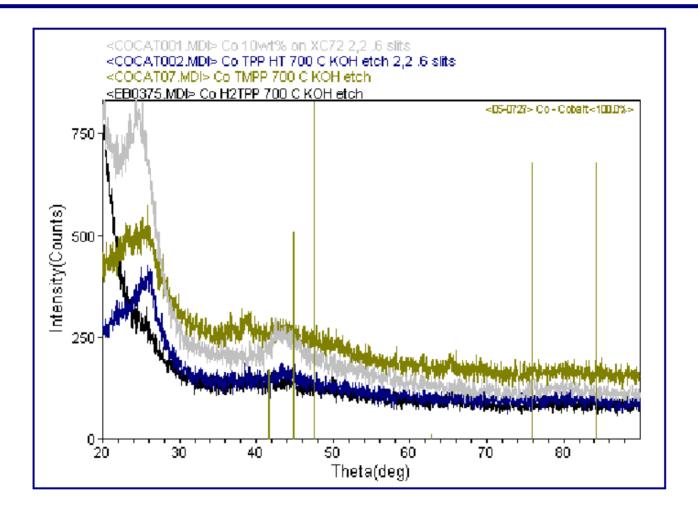
Remarkable Oxygen Reduction Activity





- HIGHLIGHT: Demonstrated high catalytic activity of three metalloporphyrins in H₂-air and H₂-O₂ fuel cells
- Similar performance observed with all catalysts when cathode operated on air
- Diminished performance of Co/Fe(1:1)TPP when exposed to oxygen at high temperature – possible oxidative loss of Fe

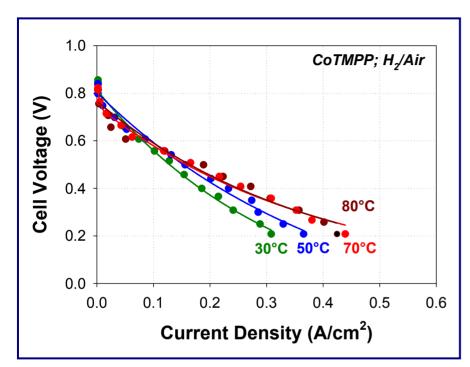
X-Ray Fluorescence (XRF) No Traces of Noble Metals Detected

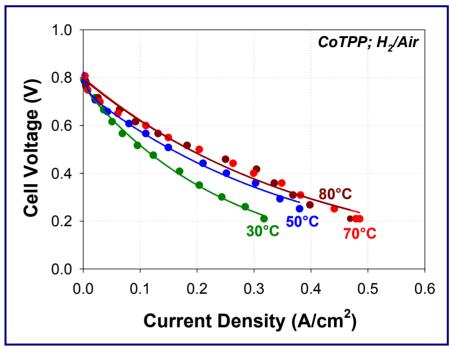


No traces of Pt and Ru in CoTPP and Co/Fe(1:1)TPP catalysts

X-Ray Diffraction (XRD)

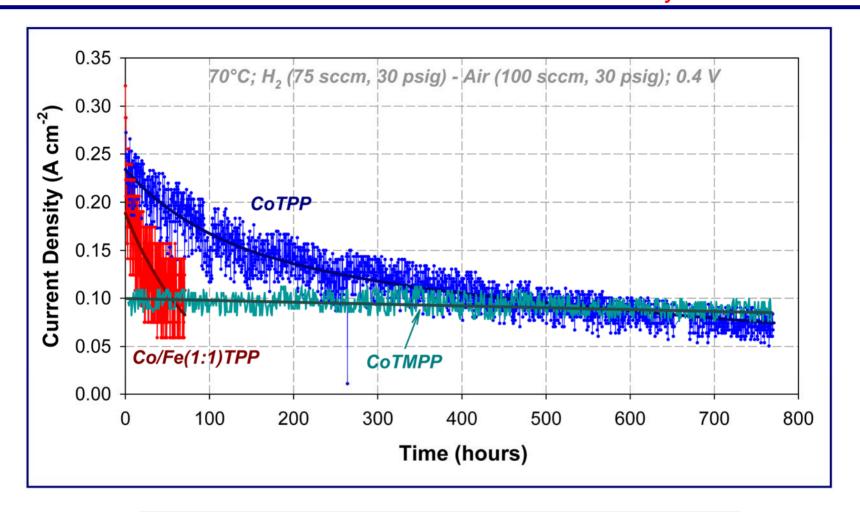
Is Metallic Co a Factor?




HIGHLIGHT: Crystalline metallic Co absent in all cobaltbased catalysts – Co not a factor in ORR catalysis

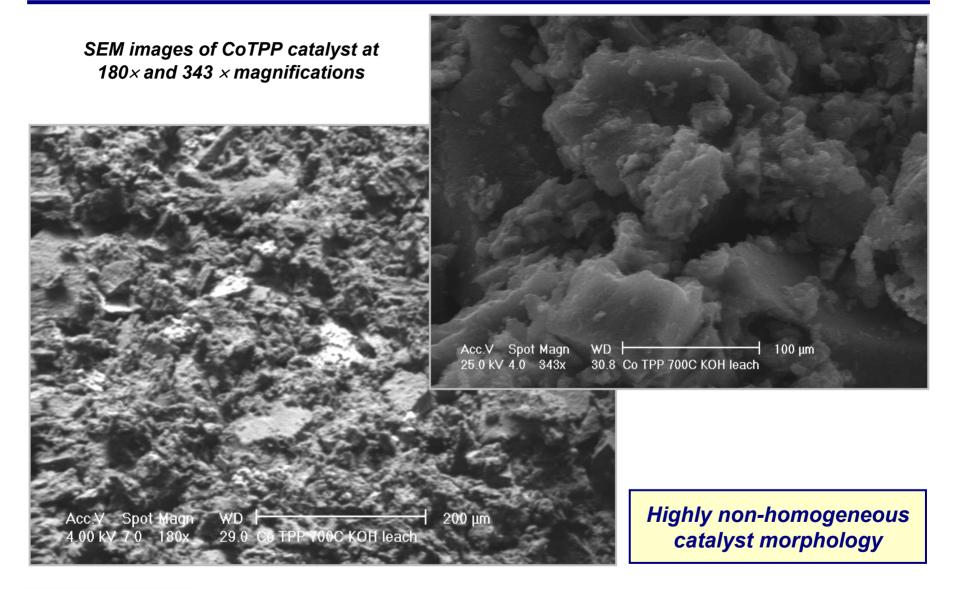
Catalyst Activity

Does the Porphyrin Type Matter?



- Similar activity of CoTTP and CoTMPP cathodes at lower temperatures
- Slight initial performance advantage of CoTPP catalyst at higher temperatures
- · Cathode structure may need further optimization

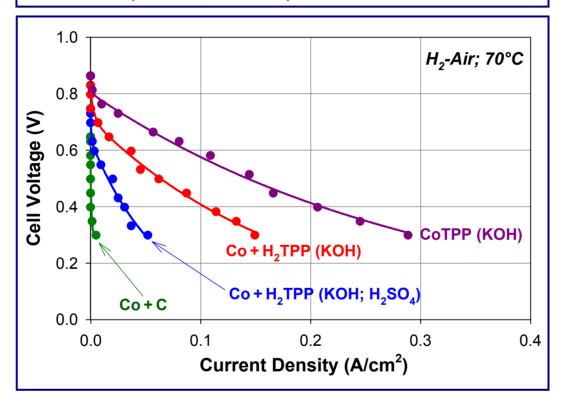
Durability Initial Performance vs. Performance Stability



- CoTPP the highest initial performance
- CoTMPP the best long-term performance stability

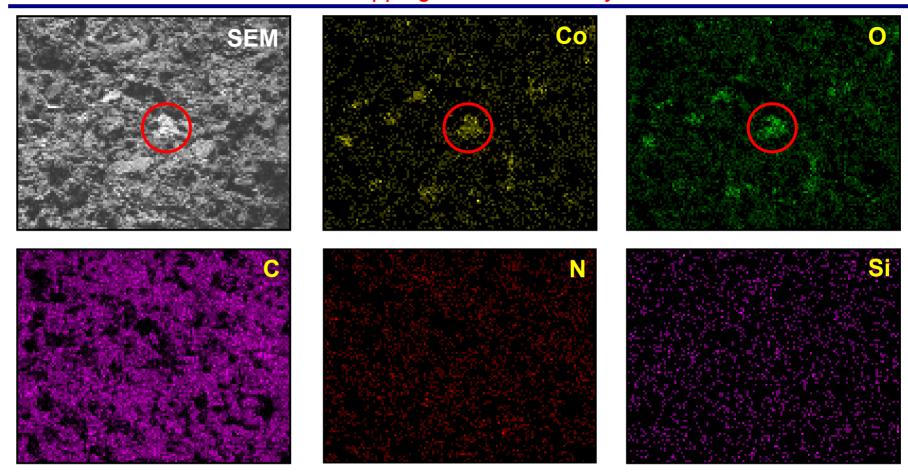
Active Reaction Site

Scanning Electron Microscopy (SEM)



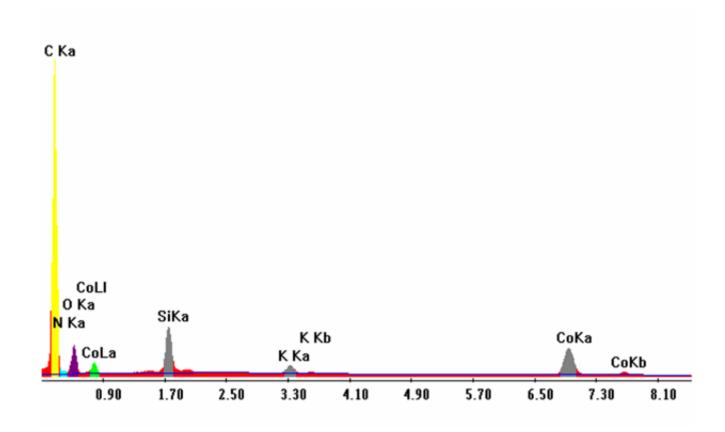
Active Reaction Site

Source of Catalytic Activity


- Carbon-supported Co
- 10% Co + 90% H_2 TPP (HT 700°C, KOH etch, H_2 SO₄ bath)
- 10% Co + 90% H₂TPP (HT 700°C, KOH etch)
- Co-TPP (HT 700°C, KOH etch)

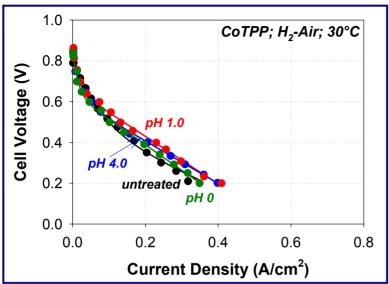
HIGHLIGHT: Cobalt species, not N₄-sites, appear to play major role in oxygen reduction at the CoTPP electrocatalysts

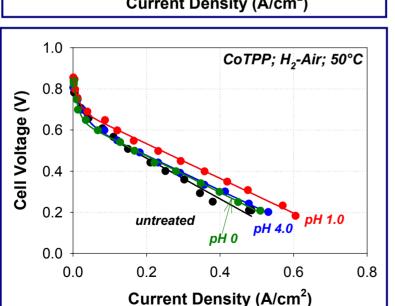
Active Reaction Site EDX Mapping of CoTPP Catalyst

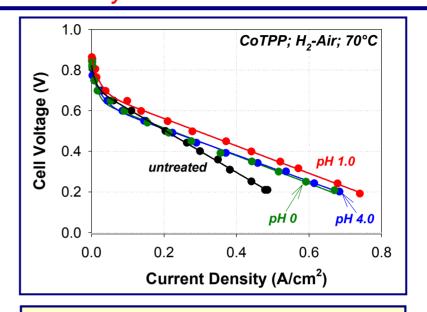


- HIGHLIGHT: Excellent correlation in the distribution of cobalt and oxygen
- Nitrogen distributed uniformly, not correlated with cobalt or oxygen
- Silicon (from remaining silica) and potassium (from KOH) uniformly distributed

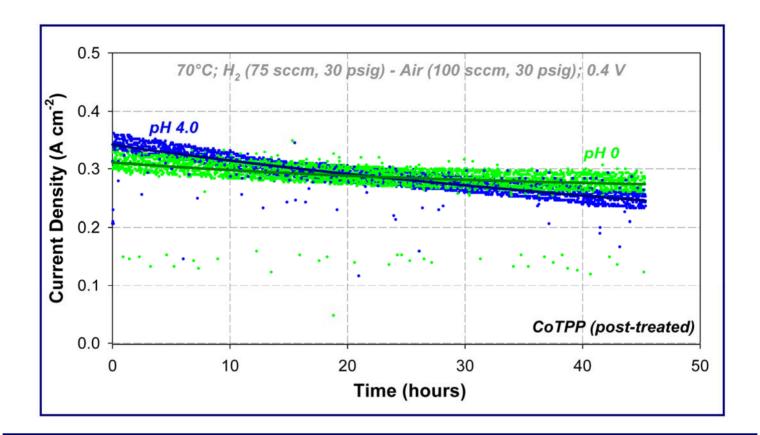
Active Reaction Site


EDX Spectrum of CoTPP Catalyst




- HIGHLIGHT: Very little nitrogen relative to cobalt
- Noticeable presence of silicon and potassium
- Potential for further catalyst performance improvement via removal of Si and K

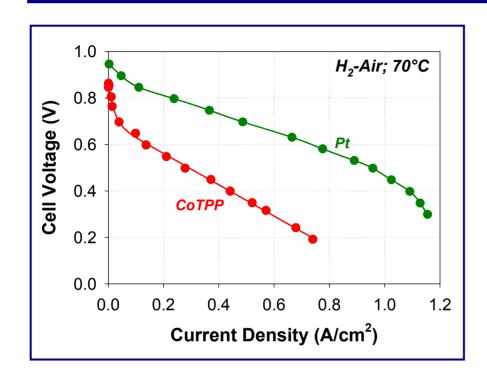
Effect of pH Dilute Acid Post-Treatment of Catalyst Powders



- HIGHLIGHT: Post-treatment with dilute acid a promising method of enhancing catalyst activity
- pH 1.0 treatment leading to the highest increase in catalytic activity, up to 100 mV at 50-70°C
- Improved air access due to the removal of inactive species – a likely reason for improved catalyst performance

Effect of pH

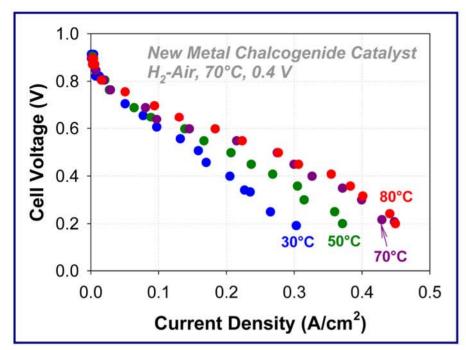
Performance Stability

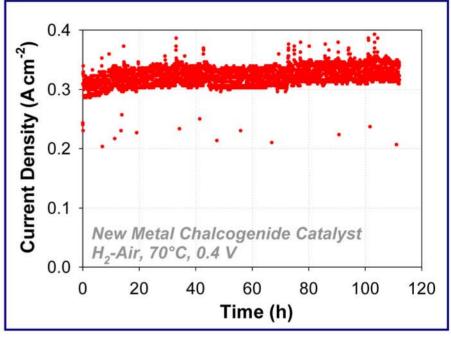


- HIGHLIGHT: pH treatment leading to significant gains in both shortand long-term performance of CoTPP catalyst
- CoTPP treated at pH 4.0 good initial performer
 CoTPP treated at pH 0 the most stable catalyst

Co-TPP vs. Pt at the Fuel Cell Cathode

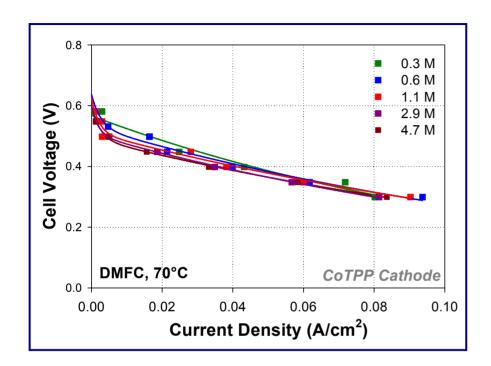
Performance Comparison

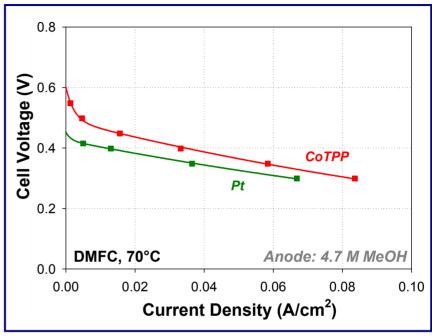




- HIGHLIGHT: H₂-air cell operated with a post-treated CoTPP cathode capable of delivering up to 0.180 W cm⁻², ca. 1/3 of the cell with a Pt cathode at the same loading (2 mg cm⁻²)
- In addition to further improvements in the activity and stability of metalloporphyrin catalysts, an increase in operating potential, by as much as 100 mV, is needed for better efficiency

The Latest Metal Chalcogenides


HIGHLIGHT: New chalcogenide catalyst exceeding the performance of best post-treated metalloporphyrins without any performance drop over the first 110 hours!


© Collaboration with Université de Poitiers and University of Illinois

Additional Benefit

Crossover Methanol Tolerance

- HIGHLIGHT: Very good methanol tolerance of CoTPP cathode catalyst in cells with up to ~ 5 M methanol concentration in the anode feed stream
- Non-precious metal catalyst outperforming Pt black catalyst (2 mg cm² loading) in cells with high MeOH anode concentration
- HIGHLIGHT: New metal chalcogenide catalyst found tolerant up to 17 M methanol

Progress Towards Milestones

- Develop techniques for electrochemical characterization of non-precious metal catalysts under conditions relevant to fuel cell operation (June 2004).
 - Milestone fully achieved Implemented electrochemical techniques: (i) fuel cell testing: hydrogen-air, DMFC; (ii) rotating disk electrode (RDE) & rotating ring-disk electrode (RRDE); (iii) ultramicroelectrodes.
- Perform initial electrochemical/pH stability experiments on pyrolized macrocycle transition metal (PMTM) catalysts (March 2005).
 - Milestone achieved & exceeded Performance stability determined with three different metalloporphyrin catalysts; effect of acidity on initial and long-term performance of catalysts studied at three pH values used in "post-treatment".
- Identify active reaction site(s) for oxygen reduction on pyrolized N_4 -chelate electrocatalyst in polymer electrolyte fuel cell (September 2005).
 - Milestone on schedule Results obtained to date make N_4 -site questionable as the active reduction center; good correlation between cobalt and oxygen distribution points to major role of cobalt oxides (hydroxides).

Research Plans

Remainder of FY 2005

• Identify and characterize the active site (or sites) for oxygen reduction reaction (ORR) at the metalloporphyrin surface.

FY 2006 Objectives

- Determine distribution of active ORR sites on the surface of metalloporphyrins as a function of (i) catalyst type, (ii) fabrication technique and conditions, (iii) catalyst "post-treatment" (including indepth determination of the effect of solution pH).
- Investigate structures potentially leading to the protection of active ORR site(s) in acidic media and thus improved activity and durability of metalloporphyrin catalysts.
- Lower high-frequency resistance of membrane-electrode assemblies with non-precious metal cathode catalysts.
- Perform performance study of metal chalcogenides as very promising alternatives to metalloporphyrins.

Hydrogen, Fuel Cells & Infrastructure Technologies Program 2005 Annual Review

Washington, DC, May 23-27, 2005

Non-Precious Metal Catalysts (Supplement)

Eric Brosha, Jong-Ho Choi, John Davey, Fernando Garzon Christine Hamon, Barbara Piela, John Ramsey, Francisco Uribe and

Piotr Zelenay

Los Alamos National Laboratory Los Alamos, New Mexico 87545

DOE Program Manager: LANL Program Manager:

Nancy Garland

Ken Stroh

Project ID FC - 11

This presentation does not contain any proprietary or confidential information

Conference Presentations

- 1.205th Meeting of the Electrochemical Society, San Antonio, Texas, May 9 13, 2004. Title: "Non-Platinum Electrocatalysts for Polymer Electrolyte Fuel Cells: Fuel Cell Evaluation of Oxygen Reduction Catalyst" S. Levendosky, P. Atanassov, J. Davey and P. Zelenay.
- 2.206th Meeting of the Electrochemical Society, Honolulu, Hawaii, October 3 8, 2004. Title: "Non-Platinum Electrocatalysts for Polymer Electrolyte Fuel Cells: Methanol-Tolerant Cathode Catalyst," S. Levendosky, P. Atanassov, B. Piela and P. Zelenay.

Hydrogen Safety

The most significant hydrogen hazard associated with this project is:

Leak in the hydrogen supply resulting in accumulation of the gas in the room, which could then lead to explosion upon ignition.

Hydrogen Safety

Our approach to dealing with this hazard is as follows:

- Hydrogen sensors, interlocked with the hydrogen gas supply, have been installed in the laboratories with hydrogen supply from gas cylinders or from a hydrogen generator.
- Hydrogen sensors have been installed at just below the ceiling where gas accumulation is most severe; also, two sensors are installed in every room for redundancy; the alarm is set off at 10% of Lower Flammability Limit (LFL).
- In laboratories that use bottled hydrogen, only a single cylinder is used at any given time; the cylinder size is limited to ensure that the LFL is not exceeded even upon complete release of a full cylinder.
- All work has been reviewed and approved through Los Alamos National Laboratory's safety programs:
 - Hazard Control Plan (HCP) hazard based safety review
 - Integrated Work Document (IWD) task based safety review
 - Integrated Safety Management (ISM)

