2005 DOE Hydrogen Program Review

MEA & Stack Durability for PEM Fuel Cells

3M/DOE Cooperative Agreement No. DE-FC36-03GO13098

Project ID # FC12

3

Mike Hicks 3M Company May 24, 2005

Overview

Timeline

- 9/1/2003 8/31/2006
- 40% complete

Budget

- Total \$10.1 M
 - DOE \$8.08 M
 - Contractor \$2.02 M
- FY04 \$1,650,000 from DOE (47% of FY04 PMP)
- FY05 Projected
 \$2,350,000 from DOE
 (88% of FY05 PMP)

Barriers & Targets

- A. Durability: 40k hrs
- B. Cost: \$400 750/kW

Partners

- Plug Power
- Case Western Reserve University

Subcontract

University of Miami

Consultant

Iowa State University

Objectives

Develop a pathway/technology for stationary PEM fuel cell systems for enabling DOE to meet its year 2010 objective of 40,000 hour system lifetime

Goal: Develop an MEA with enhanced durability

- Manufacturable in a high volume process
- Capable of meeting market required targets for lifetime and cost
- Optimized for field ready systems
- 2000 hour system demonstration

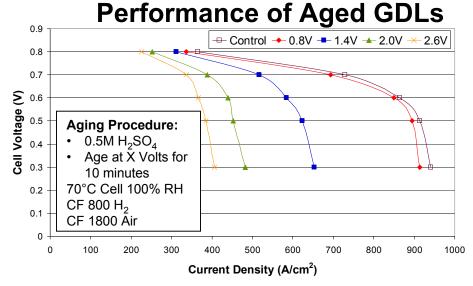
Focus to Date

- MEA characterization and diagnostics
- MEA component development
- Degradation mechanisms
- Defining system operating window
- MEA and component accelerated tests
- MEA lifetime analysis

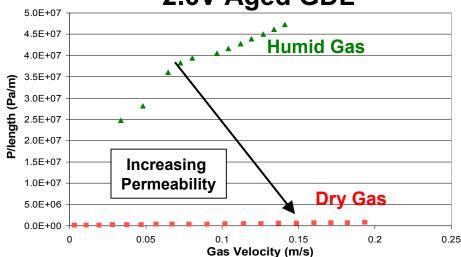
Approach

To develop an MEA with enhanced durability

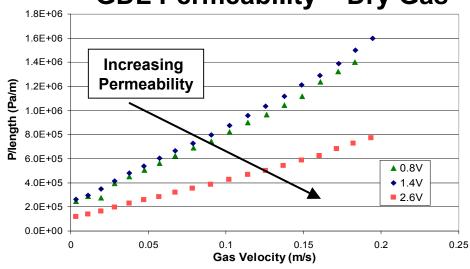
Optimize MEAs and Components for Durability


Optimize System Operating Conditions to Minimize Performance Decay

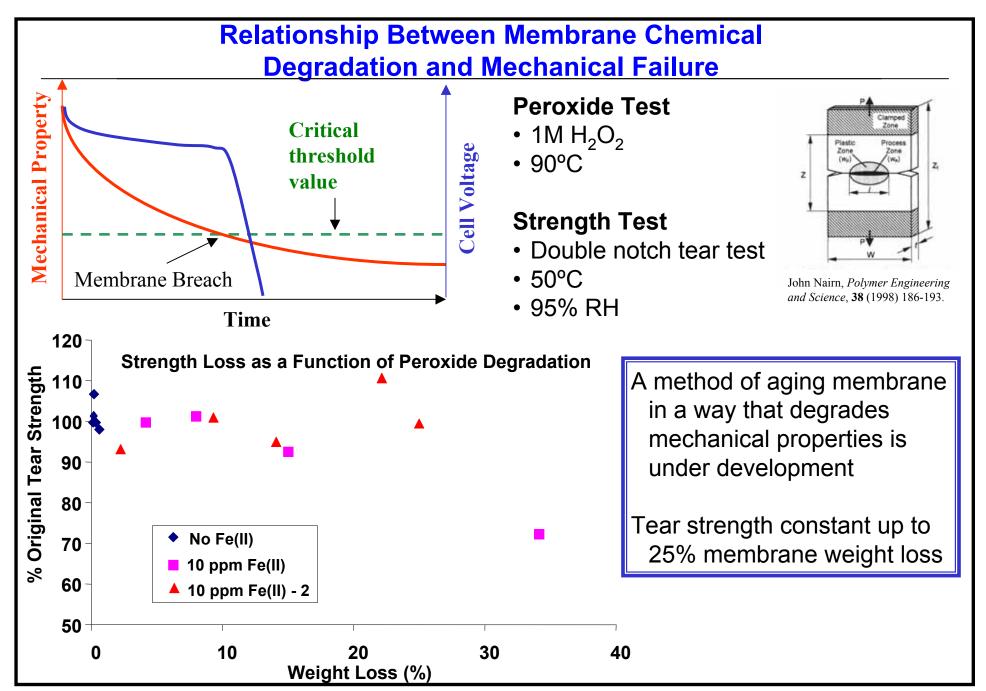
- Utilize proprietary 3M Ionomer
 - Improved stability over baseline ionomer
- Utilize ex-situ accelerated testing to age MEA components
 - Relate changes in component physical properties to changes in MEA performance
 - Focus component development strategy
- Optimize stack and/or MEA structure based upon modeling and experimentation
- Utilize lifetime statistical methodology to predict MEA lifetime under 'normal' conditions from accelerated MEA test data

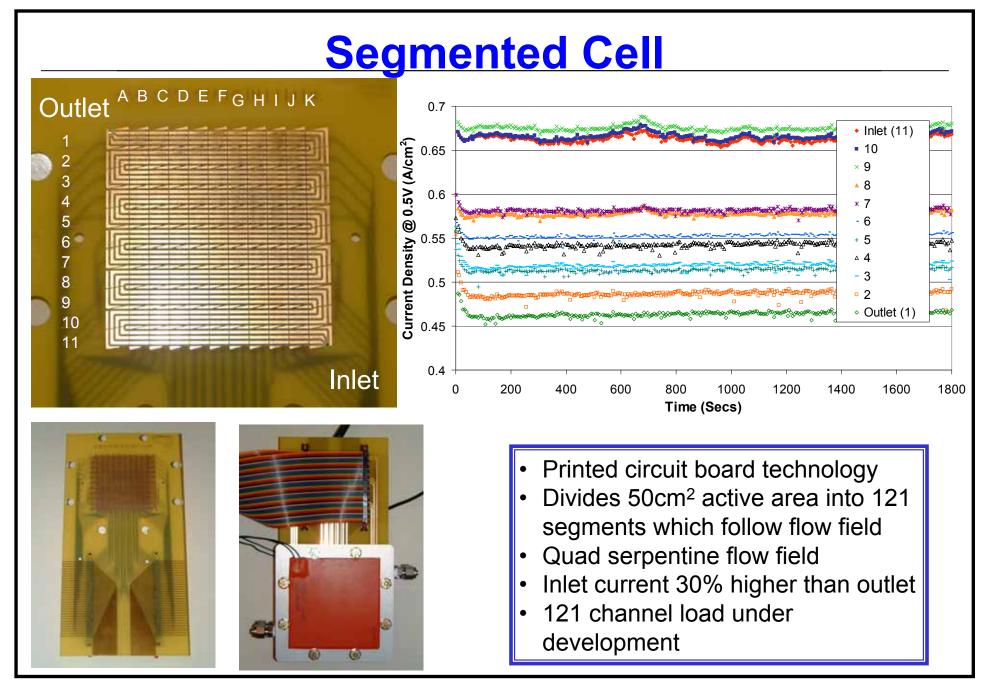

Accomplishments

- Component Characterization
 - GDL permeability
 - Membrane properties vs decay
 - Segmented cell
- Model Compound Study Membrane Decay Mechanism
- Component Development
 - Membrane (improved oxidative stability)
 - End group modified
 - Additive studies
 - GDL (improved oxidative stability)
 - Stability factor
 - Electrode design Start-up, performance and fluoride release
- System Study CO and Air Bleed
- MEA Accelerated Testing
 - Effect of load settings
 - Relationship between fluoride release and MEA lifetime
 - Statistical analysis of accelerated test data
 - New MEAs with significant durability improvement


GDL Permeability Measurements

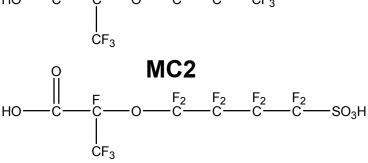
GDL Permeability – Humid Gas 2.6V Aged GDL



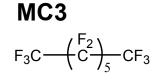


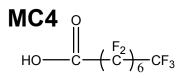
- Measure GDL permeability under both humid and dry air
- Humid permeability lower than dry
 - · Pores fill with water
- Humid conditions represent fuel cell conditions

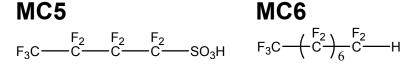
MEA & Stack Durability for PEM Fuel Cells – DOE Hydrogen Program Review May 23 - 26, 2005

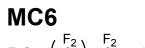


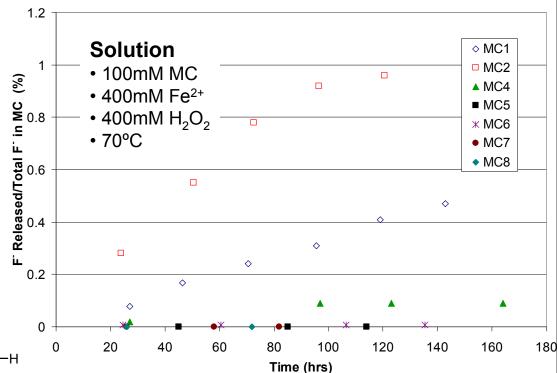
MEA & Stack Durability for PEM Fuel Cells – DOE Hydrogen Program Review May 23 - 26, 2005



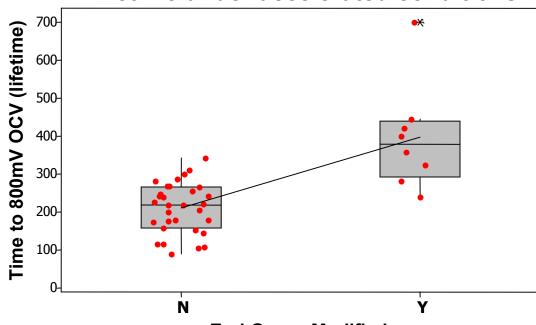

MEA & Stack Durability for PEM Fuel Cells – DOE Hydrogen Program Review May 23 - 26, 2005


Model Compound (MC) Study – Membrane Decay Mechanism




MC1

MC7


MC8

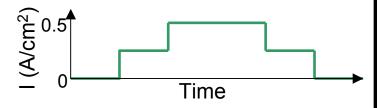
- –SO₃H stable
- –COOH unstable
 - Ether linkages & tertiary C–F positions alpha to -COOH accelerate decay

MEA & Stack Durability for PEM Fuel Cells – DOE Hydrogen Program Review May 23 - 26, 2005

Stability of End Group Modified 3M Ionomer

Lifetime under accelerated conditions

End Group Modified


HOOC
$$\xrightarrow{F_2}$$
 $\xrightarrow{F_2}$ $\xrightarrow{F_2$

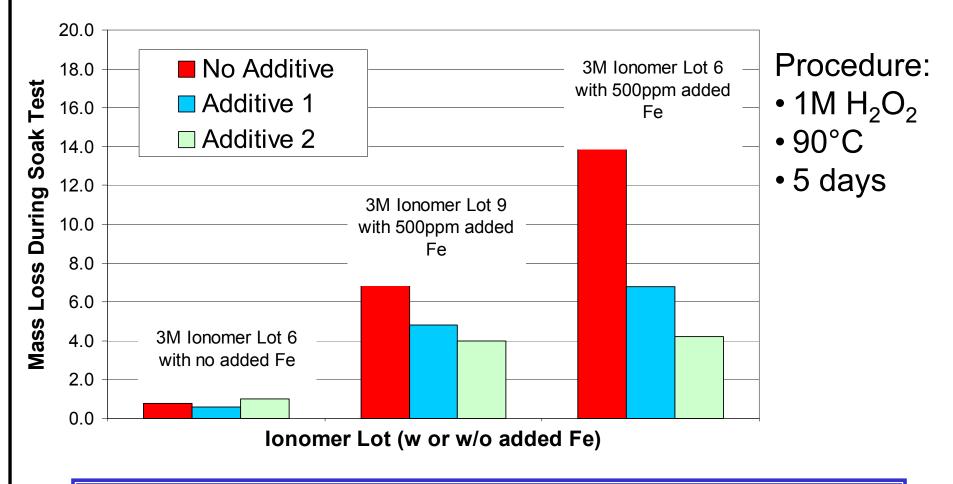
End Group Modification

Eliminates –COOH groups

Accelerated Test Conditions:

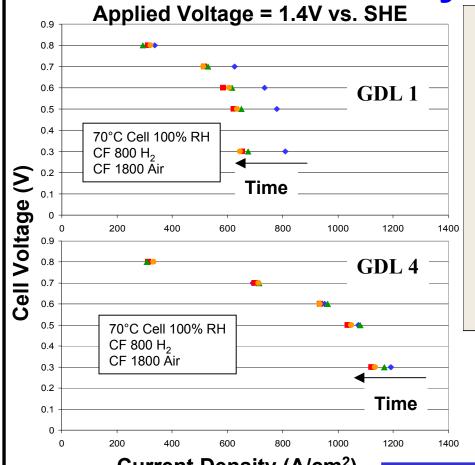
90°C cell 70°C gas dew points H₂/Air Anode over pressure Load Profile:

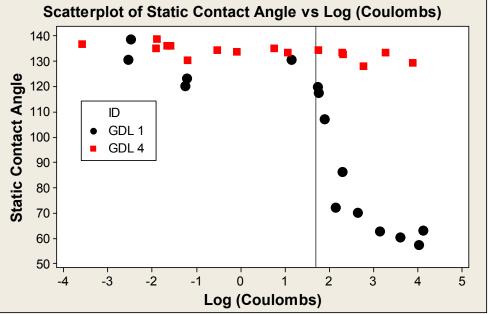
Statistically significant difference


 ANOVA => p=0.000 @ 90% confidence interval

Accelerated lifetime test

- 89% improvement
- 396hrs vs 210hrs


MEA & Stack Durability for PEM Fuel Cells – DOE Hydrogen Program Review May 23 - 26, 2005


3M Membrane Stability – Ex-situ Tests

Additives significantly mitigate membrane degradation via hydrogen peroxide

GDL Stability Improvements

Stability Factor (SF) = f(GDL, Voltage)

Time to 50 C [GDL X, Volts]

Time to 50 C [GDL 1, Volts]

Voltage (V)	GDL 5 SF
2.5	6
2.3	13
2.0	87
1.6	1549

Current Density (A/cm²)

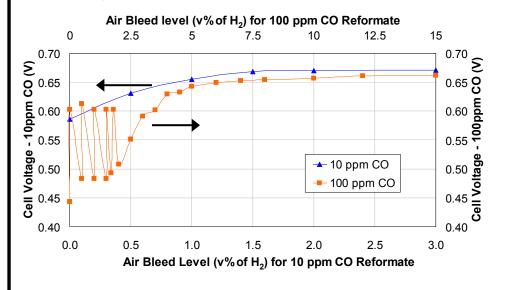
Aging Procedure:

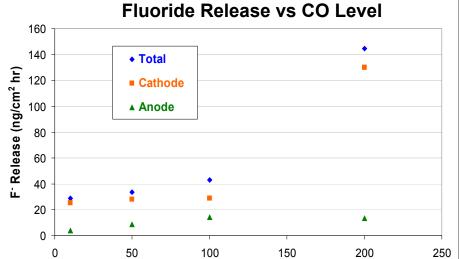
- 0.5M H₂SO₄
- Age at voltage for 1, 10, 100 or 1000 minutes

New GDLs more stable

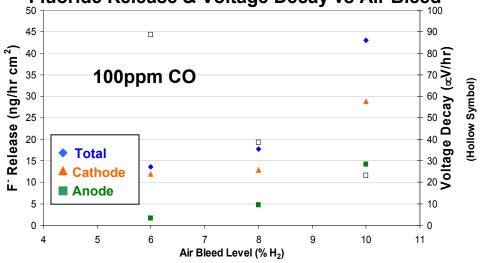
 GDL5 > 1500X improvement

MEA & Stack Durability for PEM Fuel Cells – DOE Hydrogen Program Review May 23 - 26, 2005


3 Fuel Cell Components

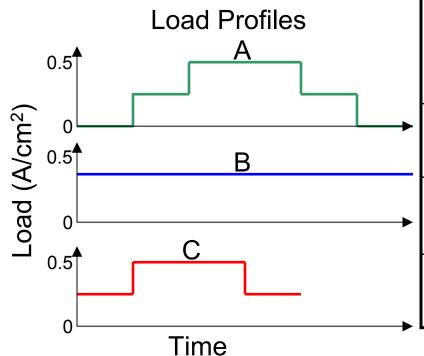

<u>Electrode Design – Start-up, Performance and Fluoride Release</u> Test Conditions: 70°C Cell, 100% RH, 800/1800 sccm of H₂/Air 1.2 0.8 ◆ 0.3V • 0.3V Current Density (A/cm²) ■ 0.5V ■ 0.5V ▲ 0.6V ▲ 0.6V Electrode A Electrode C □ 0.7V □ 0.7V ♦ 0.8V ♦ 0.8V 8 10 10 **Electrode** B C Α I (A/cm²) @ 0.6V 80°C, 100% RH, 0.571 0.535 0.563 8.0 260/850 sccm H₂/Air • 0.3V 0.6 ■ 0.5V 0.10 0.17 F-Release 0.16 ▲ 0.6V □ 0.7V ±0.02 ±0.02 ±0.02 (∞g/day/cm²) Electrode B ♦ 0.8V Need to balance start-up, performance & fluoride release when selecting electrode design Time (hrs)

MEA & Stack Durability for PEM Fuel Cells – DOE Hydrogen Program Review May 23 - 26, 2005


System Studies – CO/Air Bleed and Their Effect on F- Release

Typical Cell Performance vs Air Bleed

Fluoride Release & Voltage Decay vs Air Bleed


 Fluoride release increases with CO level

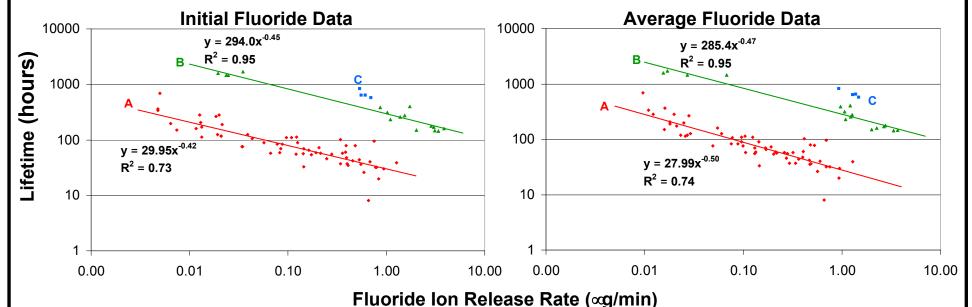
CO Concentration (ppm)

- Both anode and cathode
- Performance and fluoride release increase with air bleed
- System design must account for these competing factors

MEA & Stack Durability for PEM Fuel Cells – DOE Hydrogen Program Review May 23 - 26, 2005

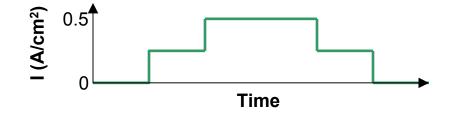
Accelerated Testing: Effect of Load on Lifetime

	Load Profile	Lifetime (hrs)	Average F⁻ Ion Release (∝g/min)
•	A (14 samples)	260 +/- 110	2 +/- 1
•	B	4540 . / 400	0.40 . / 0.4
	(4 samples)	1548 +/- 120	0.13 +/- 0.1
	С	> 2500	
	(2 samples)	(ongoing)	< 0.04

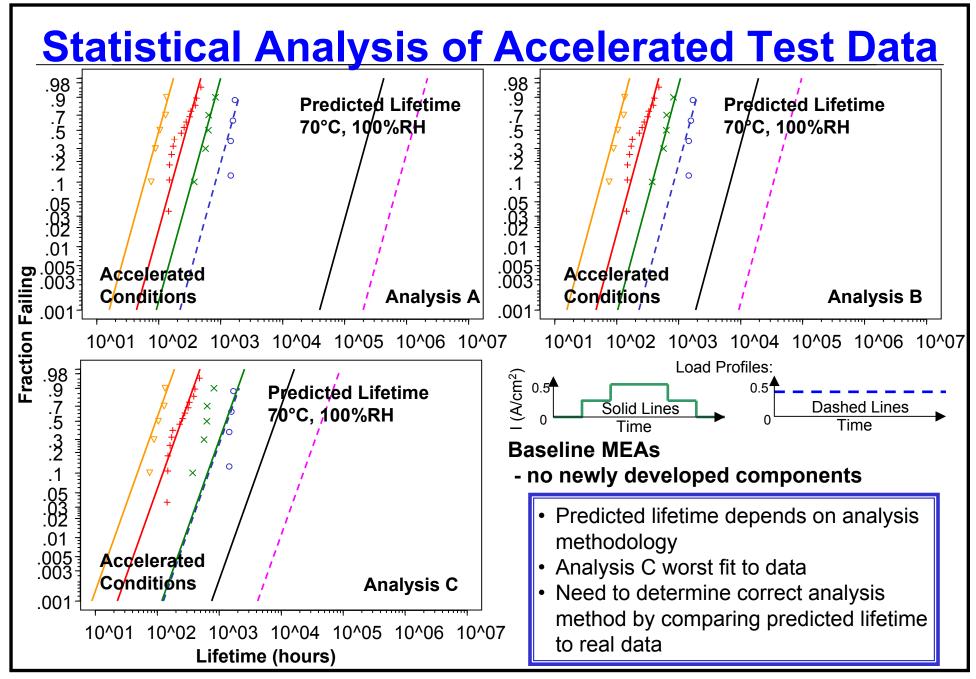

Accelerated Test Conditions:

90°C cell 70°C gas dew points H₂/Air Anode over pressure Same MEA construction Load profile significantly affects lifetime

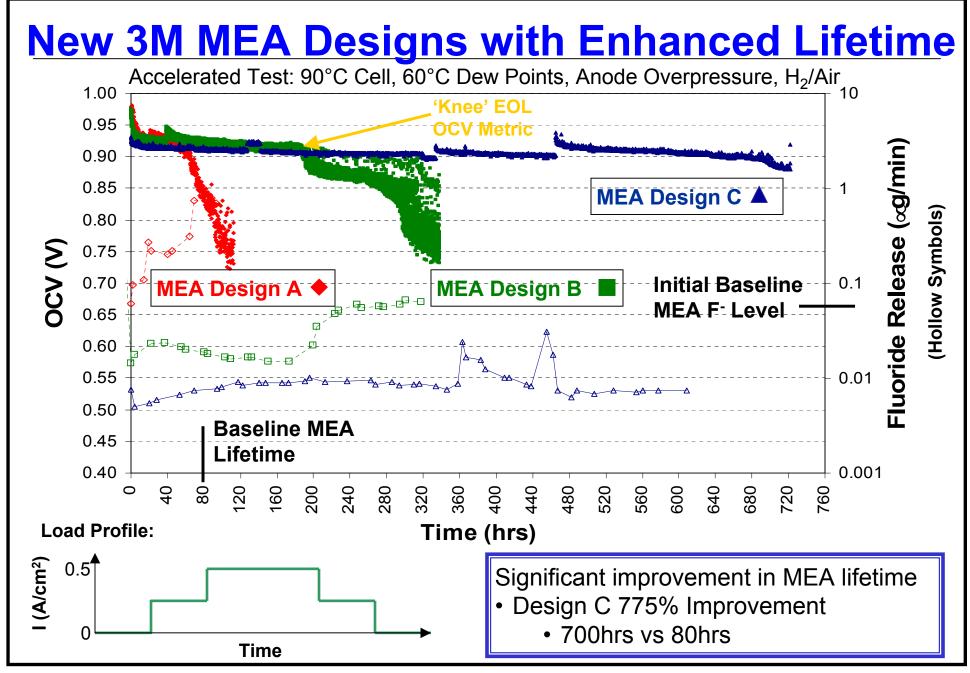
- OCV setting results in a > 8X reduction in MEA lifetime under accelerated conditions
- Systems should be designed to reduce total time spent at OCV


MEA & Stack Durability for PEM Fuel Cells – DOE Hydrogen Program Review May 23 - 26, 2005

Relationship Between F- Release & MEA Lifetime


Accelerated Test Conditions:

H₂/Air Anode over pressure Various membranes Load profile:



- Strong relationship between fluoride release rate and MEA lifetime
- Relationship independent of membrane type

MEA & Stack Durability for PEM Fuel Cells – DOE Hydrogen Program Review May 23 - 26, 2005

MEA & Stack Durability for PEM Fuel Cells – DOE Hydrogen Program Review May 23 - 26, 2005

MEA & Stack Durability for PEM Fuel Cells –
DOE Hydrogen Program Review May 23 - 26, 2005

MEA Design B – DOE Contract No. DE-FC04-02AL67621

18

Response to 2004 Reviewers' Comments

- Incorporate automotive conditions; define durability requirements for automotive operation.
 - Accelerated stationary MEA tests are close to actual automotive operating conditions
 - Accelerated component tests valid for both stationary and automotive
- No collaboration outside of team members. Program only valuable to 3M and Plug Power.
 - "Critical mass" of collaboration established with CASE, Plug Power, and 3M as required in the solicitation
 - Subcontract with University of Miami
 - Working with consultant from Iowa State University
 - R&D addresses fundamental issues
 - Knowledge gained and successful demonstration of progress will benefit entire fuel cell industry
- Need MEAs and systems less sensitive to operating conditions.
 - Only reported results with baseline materials and system in 2004
 - New designs are still under development
 - First system test w/new MEAs underway in 2005
- Catalyst support degradation critical barrier. How will it be solved?
 - Not a critical barrier; commercially available catalysts address this issue

Future Work

Remainder of 2005

- Ongoing MEA component development
- Pilot scale-up of new components
 - MEA component integration
- Ongoing accelerated MEA lifetime testing
 - Initiate MEA accelerated testing with new components
- Ongoing 3D model and segmented cell work
- Ongoing studies on interactions between system parameters and MEA durability
- Start system testing using newly developed MEAs

2006

- Complete activities started in 2005
- Select MEA components for final system tests
- Final system demonstration

Publications and Presentations

- C. Zhou, T. Zawodzinski, Jr., D. Schiraldi, "Chemical changes in Nafion® membranes under simulated fuel cell conditions," 228th ACS Meeting, Philadelphia, PA, August 2004.
- M.T. Hicks, "Accelerated testing Application to fuel cells", 2004 Fuel Cell Testing Workshop, Vancouver BC, Canada, September 2004.
- A. Agarwal, U. Landau and T. Zawodzinski, Jr., "Hydrogen peroxide formation during oxygen reduction on high surface area Pt/C catalysts," 206th ECS Meeting, Honolulu, HI, October 2004. (Presentation and Paper)
- C. Zhou, T. Zawodzinski, Jr., D. Schiraldi, "Chemical changes in Nafion® membranes under simulated fuel cell conditions," 206th ECS Meeting, Honolulu, HI, October 2004.
- M. Pelsozy, J. Wainright and T. Zawodzinski Jr., "Peroxide production and detection in polymer films," 206th ECS Meeting, Honolulu, HI, October 2004. (Presentation and Paper)
- J. Frisk, W. Boand, M. Hicks, M. Kurkowski, A. Schmoeckel, and R. Atanasoski, "How 3M developed a new GDL construction for improved oxidative stability," 2004 Fuel Cell Seminar, San Antonio, TX, November 2004.
- D. Schiraldi, "Chemical durability studies of model compounds and Nafion® under mimic fuel cell conditions," Advances in Materials for Proton Exchange Membrane Fuel Cells, Pacific Grove, CA, February 2005.
- S. Hamrock, "New membranes for PEM fuel cells", Advances in Materials for Proton Exchange Membrane Fuel Cells, Pacific Grove, CA, February 2005
- C. Zhou, T. Zawodzinski, Jr., D. Schiraldi, "Chemical durability studies of model compounds and Nafion® under mimic fuel cell conditions," 229th ACS Meeting, San Diego, CA, March 2005.

<u>Hydrogen Safety</u>

The most significant hydrogen hazard associated with this project is:

- Accidental H₂ release in cylinder closet leading to ignition from:
 - H₂ line or manifold breach
 - Accident during replacement of tank cylinders

Hydrogen Safety

Our approach to deal with this hazard is:

➤ Design

- Hydrogen cylinder closet and gas distribution system adhere to codes.
- Reduction in number of cylinders in the tank closet
- 2-step regulators (less susceptible to failure and designed to fail closed)
- H₂ sensors in all labs and tank closet, alarm system
- Automatic shut-off of H₂ gas supply if sensors detect H₂ release

> Procedures

- SOP's for tank changing, alarm responses, test station operation
- Tank changing restricted to highly trained personnel
- Regular maintenance checks sensors, leak check of valves etc.
- ➤ Installing H₂ Generator (in non-inhabited mechanical room) to significantly reduce total volume of H₂ in facility