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Overview

Barriers & Targets

A. Durability:-
Drive cycle lifetime of 5,000 hours

B. Cost:-
$8/kW

C. Electrode Performance:-
50Acm-3 @800mV (iR free)

Partners

University of British 
Columbia

Case Western Reserve 
University

Timeline

Project start: February 2004

Project ends:  December 2006

Project 30% complete

Budget

Total funding:  $1,975,175

DOE share:      $1,580,139

Ballard share:  $   395,036

FY’04 funding: $   457,383

Funding FY’05:$   600,000
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Objectives

To develop a non-precious metal cathode catalyst for PEM fuel 

cells which is as active and as durable as current PGM based 

catalysts at a significantly reduced cost.

Optimization of composition and structure

Manufacturing process development

Evaluation, optimization and demonstration in fuel cells and stacks

Note that this objective does not reflect the recent changes to 

technical targets as stated in the previous slide.
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Approach

A matrix involving three transition metals (Cr, Fe, Co) and two 
chalcogens (Se, S) is used to screen for stability and activity 
for oxygen reduction in sulfuric acid.

Because the surface area of nano-disperse catalysts is difficult 
to measure, sputtered thin films with a defined surafce area 
were used for comparison and structural characterization using 
EDX, XRD, SAM, XPS, SEM, TEM etc.

The downselected materials  are then synthesized as 
supported catalyst for ex-situ evaluation as nano-dispersed 
materials.

Finally, the best catalyst is optimized and evaluated in PEM 
fuel cells and short stacks to demonstrate activity and 
durability to meet the technical targets.
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Technical Accomplishments

Co, Cr and Fe have been evaluated with Se as thin films.

Indications from surface analysis (SAM, XPS) for Co-Se and 
Fe-Se thin films are that excess metal dissolves leaving a 
stable selenide with Se rich outer surface.

These surfaces are stable in acid at room temperature and, 
especially for the Co-Se system, are active for ORR.

Fe-Se films do not adhere to GC well due to internal stresses.  
A thin Ta underlayer greatly improves adhesion.

Cr-Se films contain oxygen (in the bulk as well as surface).  
Oxygen is incorporated from the sputter chamber’s high 
vacuum atmosphere.  Oxygen can be reduced by lowering the 
chamber pressure, but this does not improve activity of the 
Cr-Se films.

Co-Se thin films have higher open circuit potentials compared 
to those of the Fe-Se and Cr(O,Se) systems. 
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The Co-Se system

Used Co-Se system to develop methodology.

Developed in-house sputter target to deposit wide range of 
Co:Se ratios.

Scanning Auger spectroscopy and XRD indicate that, after 
electrochemical evaluation, surface is always Se rich and 
excess Co dissolved leaving a stable Co-Se compound.

ORR activity of thin film is lower than Pt and OCV              
is <0.8V vs. RHE.

Comparison with carbon supported, dispersed catalyst shows 
similar structure and composition.  Activity of dispersed 
catalyst is higher than thin film but OCV is similar.
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Co-Se catalyst compositions

Composition from scanning Auger 
microscopy (SAM) (at %)

catalyst

S C O Co Se Se/Co

1 

(as 
prepared)

ND 88.97 3.33 5.14 2.55 0.42

1 (after EC) 13.07 69.79 1.39 1.92 13.83 12.64

2 

(as 
prepared)

ND 71.40 2.73 6.79 19.07 3.94

2 (after EC) 12.74 66.94 ND 3.25 17.07 5.91

3 

(as 
prepared)

ND 71.23 6.49 7.98 14.30 2.21

3 (after EC) 16.01 57.32 0.66 4.85 21.16 5.13

4 

(as 
prepared)

ND 82.75 3.84 5.63 7.77 1.72

4 (after EC) 10.10 59.54 ND 5.32 25.05 5.85

2.6272.3927.614

0.1815.5684.44Powder 
Co-Se 
catalyst

1.2355.1444.863

51.58

72.47

Co

0.9448.422

0.3827.531

Se/CoSe

Bulk composition from 
EDX (at %)

catalyst
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Co-Se Scanning Auger and XPS spectra
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Comparison of Co-Se catalysts to glassy carbon 
and Pt thin film (cathodic scan)
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TEM images of  Co-Se carbon
supported powder catalyst
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The differences among the three CoSe compounds

Operations: Fourier 20.000 x 1 | Import
File: Stephen powder1.raw - Type: 2Th/Th locked - Start: 5.00 ° - End: 90.00 ° - Step: 0.02 ° - Step time: 0.8 s - Temp.: 25 °C (Room) - Time Started: 1099073536 s - 2-Theta: 5.00 ° - Theta: 2.50 ° - Chi: 0.
Operations: Fourier 20.000 x 1 | Import
File: Co45Se55-5.raw - Type: 2Th/Th locked - Start: 20.00 ° - End: 90.00 ° - Step: 0.01 ° - Step time: 0.3 s - Temp.: 25 °C (Room) - Time Started: 1097705856 s - 2-Theta: 20.00 ° - Theta: 10.00 ° - Chi: 0.
Operations: Import
Co_Se commercial product from John Mathey - File: CoSe commercial one from John-Matthey.raw - Type: 2Th/Th locked - Start: 5.00 ° - End: 90.00 ° - Step: 0.02 ° - Step time: 0.8 s - Temp.: 25 °C (Room
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ORR activity of carbon supported Co-Se based 
catalysts
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Comparison of carbon supported CoSe
catalyst with supported Pt baseline
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Fe-Se system

Fe-Se thin films with low Se content (i.e. <40 atomic% in the 
bulk) dissolve upon acid exposure.

Films with higher Se contnet do not adhere well to the GC 
surface.  Films peel off after electrochemical analysis exposing
the GC surface with trace amounts of Se.

The adhesion problem is overcome for films with medium Se 
content, by sputtering a thin film of Ta onto GC surface prior 
deposition of Fe-Se.  However, this procedure does not help 
adhesion of Fe-Se films with high Se content (i.e. > 70 atomic 
%).  These films show internal stress even before 
electrochemical testing.

Stable Fe-Se/ Ta thin films have Se rich surface (SAM Se/Fe 
atomic ratio: 3-9) after electrochemical test.  Open circuit 
potentials are lower than the Co-Se system (0.59V vs. RHE).
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Fe-Se/Ta Scanning Auger spectra

Fe-Se thin 
films

with Ta 
underlayer

Bulk Se/Fe 
atomic ratio 
(from EDX)

Surface Se/Fe 
atomic ratio 
(from SAM)

Surface Se/Fe 
atomic ratio 
after EC (from 
SAM)

TF 1 0.90 Fe rich film 2.97

TF 2 1.97 0.68 9.07

SAM spectra for Fe-Se/Ta 

TF 2: (1) before and (2) after EC
SAM Fe LMM high resolution spectra for 
Fe-Se/Ta TF 2: (1) before and (2) after 
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Fe-Se/Ta polarization curves

Polarization curves of FeSe - Ta thin films 
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Cr-Se system

Cr-Se thin films containing oxygen were obtained by 
sputtering method under high vacuum conditions.

The oxygen content can be reduced to ~ 3 atomic % by 
lowering the background pressure of the chamber, but not 
completely eliminated.

Open circuit potentials for Cr-(O,Se) thin films were 
significantly lower compared to both Fe-Se and Co-Se 
systems.
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High resolution Cr LMM Scanning Auger 
spectra

Cr-(O,Se) TF1 before (1) 
and after (2) EC2

Cr-(O,Se) TF2 before (1) 
and after (2) EC2
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Comparison of polarization curves from Pt thin 
film, glassy carbon, Co-Se, Fe-Se/Ta and Cr-(O,Se) 
thin films

Polarization curves
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Summary

Studies on Co-Se, Fe-Se and Cr-Se thin films have been 
completed.

Co-Se thin films have Se rich surfaces after electrochemical 
characterization.  These are stable and active for ORR.

Fe-Se thin films are less stable and do not adhere well without 
introducing a Ta underlayer.  Potentials are lower compared to 
Co-Se system as well as activity.

Cr-Se thin films contain oxygen.  They have lower potentials 
compared to both Fe-se and Co-se systems and lower activity. 
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Response to reviewers’ comments

“Need to confirm that the “model” catalyst is truly 
representative of actual catalyst.”

Have evaluated carbon supported CoSe catalyst and found similar 
composition, structure and activity.

“Lack of effort focussing on catalyst durability/ stability, 
especially prior to stack performance & assessment testing.”

Plan to test durability at elevated temperature in thin films and ex-
situ with powders prior to fuel cell testing.

“Incorporate Go/ No-go decision into work plan!”

Go/ No-go decision will be made prior to stack testing.
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Future Work

Remainder of 2005

Complete evaluation of sulfide based thin films.

Develop solution chemistry for deposition of nano-dispersed 
catalysts.

Evaluate chosen candidate at elevated temperature.

End of 2005 milestone

Deliver preferred candidate in sufficient quantities to start fuel cell 
evaluation.

Go/ No-go decision prior to fuel cell testing.

2006

Optimize catalyst layer structure/ catalyst loading for performance 
and  durability in single cells.

Short stack build and evaluation.
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Publications and Presentations

1. S.A. Campbell; 2005 PCAMM conference paper, Vancouver BC, December 4th 2004

2. S.A. Campbell, D. Susac, P.Wong, L. Zhu, A. Sode, M. Teo, D. Bizzotto, K. Mitchell, R. Parsons; 
PBFC2 conference paper, Las Vegas, June 12th- 17th 2005, paper accepted

3. Paper in JACS planned for 2005 
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Hydrogen Safety

The most significant hydrogen hazard associated with this 
project is:-

the ignition of an external hydrogen leak in a fuel cell or short 
stack during the final phase of the project.



April 22, 2005

Hydrogen Safety

Our approach to deal with this hazard is:-
The Ballard fuel cell R&D facility is designed to manage the flammable and explosive aspects 
of hydrogen.  The facility is a 28' tall, high-bay building. 

During non-leak operations 6 exhaust fan systems draw between 80,000 to 160,000 cubic-
feet per minute of air from the ceiling area of the lab.  A air make-up system recirculates
approximately 70% of the extracted air, and blends 30% fresh air.  The lab facility is 
separated from the offices by a 2-hour fire separation.  Ventilation in the offices is slightly 
positive-pressure relative to the lab.

The lab facility has flammable gas detectors at the ceiling that are set to provide an audible 
warning alarm at 20% of the lower flammable limit (LFL) of hydrogen (0.8% hydrogen in 
air), and to shut down all electrical power to the lab at 40% of the LFL (1.6% hydrogen in 
air).  If this shut down were to occur, electrical power for all equipment is shut off, and 
explosion-proof emergency lighting turns on.  At the same time, the exhaust fans (which are 
outside of the lab, and are of explosion-proof design) ramp up to 250,000 cubic-feet per 
minute extraction, and the air make-up system switches to 100% fresh-air make-up (no 
recirculation).  Simultaneously, the gas supplies to the facility are shut-down, and the gases 
in the distribution manifolds are vented (depressurized).

This system has been in operation for over 9 years, and has never experienced a shut down 
incident.
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