Low Pt Loading Fuel Cell Electrocatalysts

Radoslav Adzic (P.I.), Junliang Zhang, Kotaro Sasaki, Tao Huang, Jia Wang, Miomir Vukmirovic

Materials Science Department Brookhaven National Laboratory, Upton, NY 11973-5000

(This presentation does not contain any proprietary or confidential information). Project ID # FC17

DOE Hydrogen Program Review, May 23-26, 2005

Overview

Timeline

- Project start date: 06.2002.
- Project end date: Multi-year
- Percent complete: --

Budget

Total project funding:

- DOE share: \$954K
- Funding received in FY04: \$250K
- Funding for FY05: \$330

Barriers addressed

1. Precious metal loading, electrocatalysts' activity

Target 2005:2.7 g/kWAccomplished:0.14 g/kW cathode0.33 g/kW cell

2. Electrocatalysts' Durability

Target 2005:2000 hrAccomplished:3000 hr (cathode)Test in progress:530 hr (low Pt cell)

Collaborations

- Los Alamos National Laboratory (Fuel cell tests F. Uribe)
- Battelle Memorial Institute (J. Sayre and A. Kawczak)
- 3M (PdCo catalyst, exploratory activities R. Atanasoski)
- Plug Power Test of the PtRu₂₀ anode catalyst in progress: **800hr** with a negligible loss in activity (B. Do).

Interactions

• General Motors Co. (F. Wagner)

Objectives

To assist the DOE in developing fuel cell technologies by providing lowplatinum-loading electrocatalysts.

For the current year:

- To demonstrate the stability of the Pt monolayer electrocatalysts for O₂ reduction in fuel cell tests (milestone experiment).
- To further the understanding of the properties of Pt monolayer electrocatalysts.
- To improve the activity of Pt monolayer (**Pt/Pd/C**) electrocatalysts.
- To improve the syntheses of electrocatalysts with ultra low, or no Pt content: Pt/Au/Ni and Pd₂Co, and to test them in fuel cells (milestones 2004).
- To explore a novel class of electrocatalysts for O₂ reduction consisting of mixed monolayers of Pt and late transition metals.

Approach

NATIONAL LABORATORY

Developing of low-Pt-loading electrocatalysts by placing a monolayer of Pt, or mixed Pt - late transition metals monolayers, on nanoparticles of suitable metals or alloys.

This approach uniquely facilitates obtaining electrocatalysts with:

Complete Pt utilization (of all atoms that are not blocked by Nafion®)

Ultimately reduced Pt loading

Low coordination of Pt atoms that should enhance their activity

Strained monolayers (tensile or compressive) with shift of the d-band center (Nørskov et al. model) causing increased or decreased activity

Electronic (ligand) effects

d narrowing shift to preserve the degree of d-filling

A method for Pt monolayer deposition on metal nanoparticles, involving displacement of a UPD adlayer, was further improved and applied for depositing mixed-metal monolayers.

SUBSTRATE EFFECTS ON Pt MONOLAYER ACTIVITY - ACTIVITY - CENTER OF THE *d*-BAND VOLCANO PLOT

RDRE measurements show the effect of the substrate

d-band centers - DFT Calculations

- Pt/Pd(111)- slight compression, electronic effect and reduced OH coverage high activity 1.
- Pt/Au(111) Pt is highly expanded d-band center increases the bond between Pt and the ORR 2. intermediates is too strong.

SUBSTRATE EFFECTS ON Pt MONOLAYER ACTIVITY - ACTIVITY - CENTER OF THE *d*-BAND VOLCANO PLOT-

Angew. Chem. Int. Ed., 2005, 44, 2132.

Ea for O₂ dissociation is the smallest on $Pt_{ML}/Au(111)$ and largest on $Pt_{ML}/Ir(111)$. The trend is the opposite for the hydrogenation of O. For a good electrocatalyst, the kinetics of both the O-O bond breaking and the hydrogenation of reactive intermediates have to be facile.

Volcano plot \rightarrow balance between two competing influences (breaking O-O and forming O-H).

Further Improvement of Pt_{ML}/Pd/C Electrocatalysts

 O_2 reduction on a Pt ML on **5nm** Pd nanoparticles; $2.3 - 5.7 \ \mu g_{Pt}/cm^2$.

Total noble metal mass-specific activity

1. A higher activity is observed for a 5 nm Pd support than for 9nm particles due to the larger surface area. (Impurity effects were observed with the 5nm Pd/C).

2. The total noble metal mass-specific activity of Pt/Pd/C is 4 times that of Pt/C!

Pt Monolayer on Pd/C Cathode Catalysts Durability Test at LANL (F. Uribe)

Test terminated after 3011hr for reasons other than catalyst's failure The catalyst's performance ranges from 0.17gPt/kW to 0.25gPt/kW, which is below the DOE 2005 target of 1.35gPt/kW (1/2x2.7).

Low Pt Content Fuel Cell

Low-Pt Content Catalysts on both Electrodes (F. Uribe) --- 0.149 mg total Pt /cm² ---

Test in-progress

Based on the RDE data, the cell voltage should be considerably higher. The reason for this inconsistency (particle size, impurities) will be investigated.

Mixed-metal Pt Monolayer Electrocatalysts

• A new class of the ORR electrocatalysts was synthesized – a Pt monolayer that is mixed with a metal with a high coverage of OH or O.

• Due to the OH-OH (O) repulsion, PtOH formation decreases, causing an increase in the ORR activity (by a factor of 4 at 0.8V for $Pt_{80}Ir_{20}$).

• Pt stabilized against oxidation.

• DFT calculations show repulsion between PtOH and MOH or MO for some metals, and ¹⁰ attraction for others.

Mixed-metal Pt Monolayer Electrocatalysts

PtOH formation on Pt(111) is suppressed by IrOH on its surface; no effect on H adsorption is observed. A small oxidation of Pt in PtIr/Pd/C is observed only at 1.17V, while Pt/C is already oxidized at 0.76V (XANES data).

Mixed-metal Pt Monolayer Electrocatalysts

Pt mass specific

PtOH coverage, O₂ reduction rates and the Tafel Slopes

- 1. Consensus exists that the OH_{ads} inhibits the ORR.
- 2. The intrinsic Tafel slope for Pt (no adsorbates other than the ORR intermediates) is -120mV/dec. The OH adsorption causes low slopes. (Quantitative analysis in J. Phys. Chem., *B* 108 (2004) 4127).
- 3. Evidence from XANES data: Deceasing the OH coverage results in higher slopes and higher activity.

Milestone for FY 2004—further improvements in 1. Synthesis and 2. Activity

1.03 μ g/cm² of Pt + 4 μ g/cm² of Au *vs.* 12 μ g/cm² of Pt

Pt and (Pt + Au) mass-specific activities are ~ 20 and 4 times that of the commercial Pt/C, respectively₁₄

A NON-PLATINUM **Pd₂Co** ELECTROCATALYST

Milestone for FY 2004—1. Activity (improved, RDE) 2. Fuel Cell test – low activity 3. Excellent methanol tolerance

 $11\mu g/cm^2$ of Pd vs. $12\mu g/cm^2$ of Pt; $0.1MHCIO_4$; $25^{\circ}C$; 20mV/s

--- 20% Pd₂Co/C (treated at 900°C) ---

- 1. The synthesis at 900°C yields large particles of a uniform alloy.
- 2. The activity of Pd_2Co in RDE experiments is similar to that of Pt (current density and mass-specific activity).

A NON-PLATINUM **Pd₂Co** ELECTROCATALYST

- 1. XANES data indicate a pronounced electronic effect in both Pd and Co and an increased stability of Pd.
- 2. The catalyst has a negligible activity for methanol oxidation and an excellent tolerance to it.
- 3. Re-protonation of MEA in hot 0.5 M sulfuric acid may cause degradation of this catalyst.

Responses to Reviewers' Comments from Last Year

1. Expand work on AuNi alloys (2 reviewers) --- The work has been expanded.

2. Continue collaboration with LANL ---- The collaboration has been intensified.

3. Faster tech transfer --- Battelle collaboration; Plug Power tests of the catalyst.

4. Studies of PtOH critical ---- These studies have been continued.

5. More work on PdCo ----- These studies have been continued.

Future Work

Remainder of FY2005

- Pt_{ML}/Pd/C electrocatalyst
 - Pd particle size effects; surface segregation; post MEA Z-contrast TEM; fuel cell tests.
- Pd₂Co electrocatalyst
 - Further synthetic studies; stability of Co.
- Mixed-metal Pt monolayer electrocatalysts
 - Basic studies of Pt-M/Pd/C; MOH (MO)-PtOH interactions

FY 2006

- New strategies to increase the stability of Pt at OCP and under potential cycling conditions
- Pt/AuNi/C electrocatalyst
 - Segregation of Pt, Au; Stability tests; Fuel cell tests.
- Pd₂Co electrocatalyst
 - Fuel cell tests.
- Pt monolayers on Pd and other metal alloy nanoparticles
 - Basic in situ surface science and electrochemical studies.
- Mixed-metal Pt monolayer electrocatalysts
 - Electrocatalytic activity, stability and segregation studies; fuel cell tests.

Publications

- 1. J.X. Wang, N.M. Markovic, R.R. Adzic "Kinetic Simulation of O₂ reduction on Pt(111) in Acid Solutions: Intrinsic Kinetic Parameters and anion adsorption effects", *J. Phys. Chem. B* 108 (2004) 4127.
- 2. K. Sasaki, J.X. Wang, M. Balasubramanian, J. McBreen, F. Uribe, R.R. Adzic, Ultra-low Platinum Content Fuel Cell Anode Electrocatalyst with a Long-term Performance Stability, Electrochimica. Acta, (special issue) 49_(2004) 3873.
- J. Zhang, Y. Mo, M.B. Vukmirovic, R. Klie, R. R. Adzic, Platinum Monolayer Electrocatalysts for O₂ Reduction: Pt Monolayer on Pd(111) and on Carbon-supported Pd Nanoparticles, J. Phys. Chem. B, J. Phys. Chem. B, 108 (2004) 10955.
- 4. J. Zhang, M. B. Vukmirovic, Y. Xu, M. Mavrikakis, R. R. Adzic, Controlling the Catalytic Activity of Platinum Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates, Angew. Chem., Int. Ed., 2005, 44, 2132.
- 5. J. Zhang, M.B Vukmirovic, K. Sasaki, F. Uribe, R.R. Adzic, Platinum monolayer electrocatalysts for oxygen reduction: substrates effects and a long-term stability, J.Serb. Chem. Soc. In press.
- 6. K. Sasaki, J. Zhang, J. Wang, F. Uribe, R.R. Adzic, Platinum submonolayer-monolayer electrocatalysts an electrochemical and x-ray absorption spectroscopy study, Research on Chemical Intermediates, in press.

Presentations

Seven papers at national and three at international meetings,

Hydrogen Safety

The major HYDROGEN hazard was associated with the saturation of electrolyte with hydrogen gas in a 100ml electrochemical cell. The gas was vented into the hood, which made its concentration negligible, without possibility of accumulation. In addition, the laboratory air is changed every 7 minutes, which would preclude accumulation of H_2 if hood is not operating properly. Presently, the studies involving H_2 oxidation are rarely conducted.