2005 DOE Hydrogen Program Development of Sensors for Automotive PEM-based Fuel Cells

DOE Agreement DE-FC04-02AL67616

Donna Ho - DOE

Tom Clark/Brian Knight UTC FC/UTRC May 26, 2005

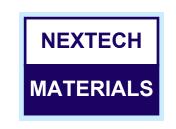
> Project ID # FC30

This presentation does not contain any proprietary or confidential information

Research Center

Overview

Transforming Lives. Inventing the Future. www.iit.edu


Timeline

- Start: April 2002
- End: September 2005
- 90 Percent complete

Budget

- Total project funding
 - DOE share: \$2.9 MM
 - Contractor share: \$720 M
- Funding received in FY04: \$1076 M
- Funding for FY05: \$540 M

Barriers

- Barriers addressed
 - Cost and Durability
 - Reliability
 - Size
 - Manufacturability

Partners

- UTC Fuel Cells/UTRC
- ATMI
- Illinois Institute of Technology (IIT)
- NexTech Materials

Objectives

- Develop suite of sensors for CO, H₂, O₂, H₂S, flow, temperature, pressure, and relative humidity that meets performance requirements
- Demonstration of new H₂ safety sensor
- Develop new measurement principles to meet sensitivity requirements
- Improve reliability in harsh fuel cell system environments
- Path to low cost (<\$20 / sensor) at 200k qty

Approach

Sensor development program utilizes a team approach

- UTRC for program coordination and physical and chemical sensor evaluation
- Illinois Institute of Technology (IIT) for chemical sensor evaluation
- Advanced Technical Materials (ATMI) for MEMS sensor development
- NexTech Materials for electrochemical and solid state sensor development

Team	Τ	ΔΡ	RH	flow	02	CO	H ₂	SO ₂	H ₂ S	NH ₃	8 1
Member											Responsibility
UTC FC	X	X	X	X	X	X	X	X	X		Testing on S300
											Breadboard
UTRC	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X	X		Testing in reformate
											simulator
ATMI							Χ	X	X		Develop Using MEMS
											Silicon Microhotplate
IIT	Х		Χ		Х	Х	Χ	X	X		Testing in Benchmark
											Facility
NexTech						Х		X	Х		Develop Using Solid State
											Electrochemical

Summary of IIT Accomplishments

ILLINOIS INSTITU

OF TECHNOLOGY

Transforming Lives. Inventing the Future. www.iit.edu

Market Survey

- Initial survey and report (completed)
- updates and additions (on-going, but essentially completed)

Benchmark Sensors

- First round testing (completed)
- Performance Reports (completed)

(safety application, concentration, interference, analytic performance)

- Second round testing (on-going)
 - safety and feed stock
 - Humidity effects on new sensors being tested
 - Effect of H₂S and CO on ATMI H₂ sensor being tested
- broader concentration range, temperature range, pressure dependence, interference (CO and H₂S), moisture effects on performance

IIT Benchmark Testing of Viable Sensor Technologies

- IIT evaluated over 70 H₂ sensing technologies
- Tiered approach used to evaluate sensor technologies
 - Gas concentration, operating temperature, water vapor pressure
 - Effect of pressure, other background gases
 - Long-term testing
- Hydrogen Sensors (Reformer)
 - -H2 Scan, Makel Engineering, ATMI, KSC NASA
- Hydrogen Sensors (Safety Application)

-H2 Scan, Applied Sensors, Makel Engineering, ATMI, Figaro, Transducer Technology, Inc., Argus Group, Nemoto Environmental Technology, Applied Nanotech

Carbon Monoxide Sensor

-NexTech Materials

(Sensors currently available are listed in blue)

Summary of ATMI Accomplishments

- LEL
 - Developed and tested rare earth hydride based MEMS sensors
 - Demonstrated performance against program targets
 - Delivered alpha prototypes for IIT& UTRC for evaluation
- Stack
 - Developed and tested Pd, Ir, and Rh quad-layer sensors
 - Demonstrated performance against targets
 - Delivered prototypes to IIT for evaluation
- H₂S
 - Developed noble metal thin film sensors
 - Demonstrated detection of 10 ppb H_2S

NEXTECH

MATERIALS Summary of NexTech Accomplishments

Sulfur Sensors

- Delivered alpha prototype to UTRC for evaluation
 - Obtained 400 hours of lifetime data
- Exhibited sensitivity at the 100 ppb level
- Cross-sensitivity to CO tested; not an issue
- Smaller substrate with integrated heaters are being tested for beta prototype calibration
- Automated stand for long-term testing has been constructed
- Established sensitivity of H₂S sensor in methane background

Carbon Monoxide Sensors

- Demonstrated sensitivity at the 5ppm level
- Addressing baseline drift issues
- Delivered alpha-prototypes to IIT and UTC
- Testing and verification of Los Alamos prototypes have begun

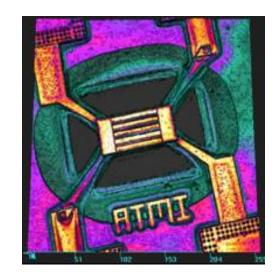
Sensor Evaluation Status

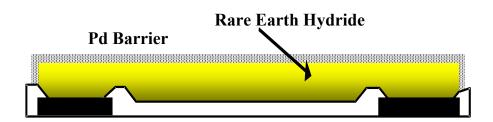
Research Center

- Physical Sensors
 - Sensors for T, P, DP, Relative Humidity (RH), and Flow evaluated in PEM fuel cell simulator in near-condensing flow regime
 - State-of-the-art physical sensors meeting program needs selected
- Chemical Sensors
 - First round of sensor testing and qualification completed
 - Multiple H₂ sensors evaluated for sensitivity, selectivity, and performance
 - $\Box \alpha$ prototype CO sensor received from NexTech Materials
 - Evaluating next generation of sensors from ATMI and NexTech to address cross-sensitivity and drift issues

Research Center

Physical Sensor Evaluation Status

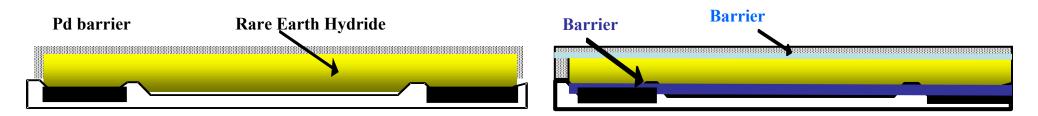

Sensor	Operating Principle	Positive Attributes	Comments
Temperature	Thermistor	0 to 250 °C, -40 to 750 °C	Response time slow but within program needs
Pressure	Strain gauge (Druck)	Silicon based IC compatible fabrication.	May be mass produced and miniaturized
RH	Polymer capacitive (Panametrics)	0 to 180 °C, 0- 100% RH	Recovery from condensing flow regime
Flow	Thermal dissipation	Most cost effective	Response fluctuation due to condensation



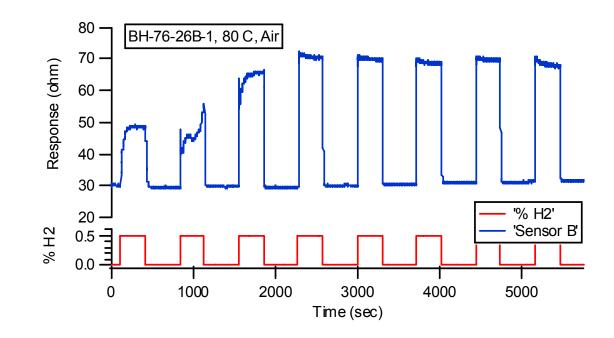
ATMI Sensors - Goals and Approach

Project Goals

- Demonstrate the capabilities of micro machined H_2 and H_2 S sensors
- Develop an understanding of their performance
- Critically evaluate the utility and viability of this technology for life safety and process monitoring
- Approach
 - MEMS based platform coupled with multilayer sensing films
 - Thermally controlled chemiresistive transduction

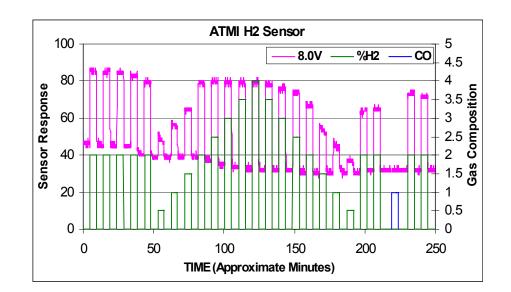


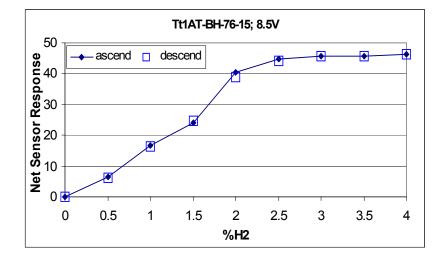
ATMI LEL Sensors

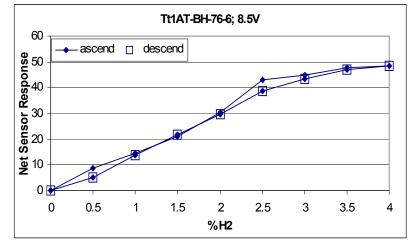

- Hydrogen in ambient air safety sensor
 - 0.1 10% H2
 - -30 to 80 °C
 - Response time < 1 sec</p>
- Pd/Y bi-layer
 - $-T_{90} < 2 \text{ sec}$
 - 8 to 10% per month baseline drift rate
- Pd quad-layer
 - 2.68% per month baseline drift rate

LEL Sensors – Pd Quad-layer

- Pd quad-layer
 - Air, 80°C
 - $-T_{90} < 2 sec$
- Sensor in commercialization stage

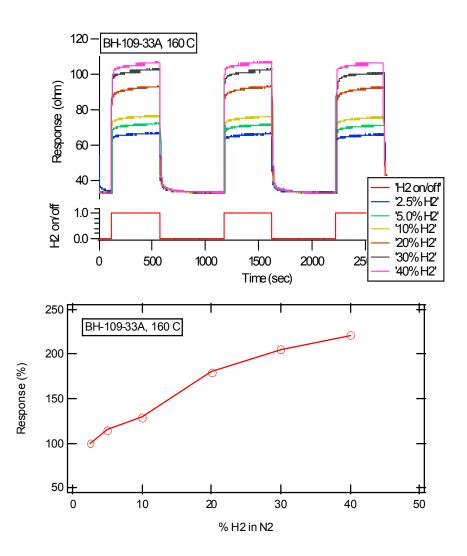




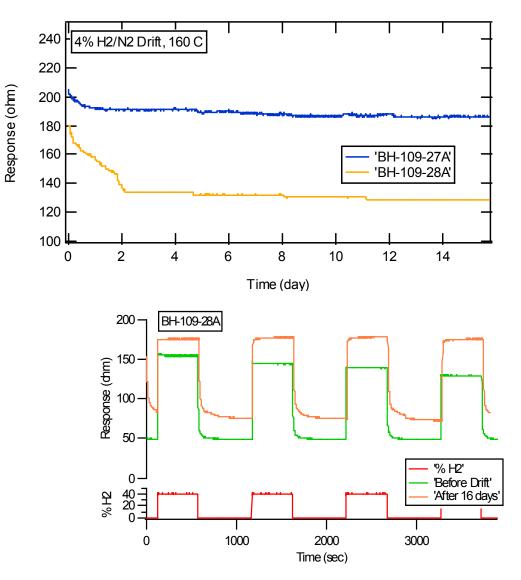


Pd Quad Layer – LEL Applications As Tested at IIT

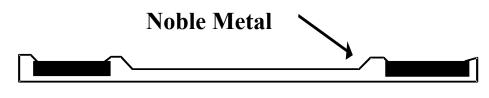
- Quick response
 - $T_{90} \sim 2 \sec$
- Good LDL
- 2.5% H₂ linearity
- Insensitive to 100 ppm CO
- Good Hysteresis



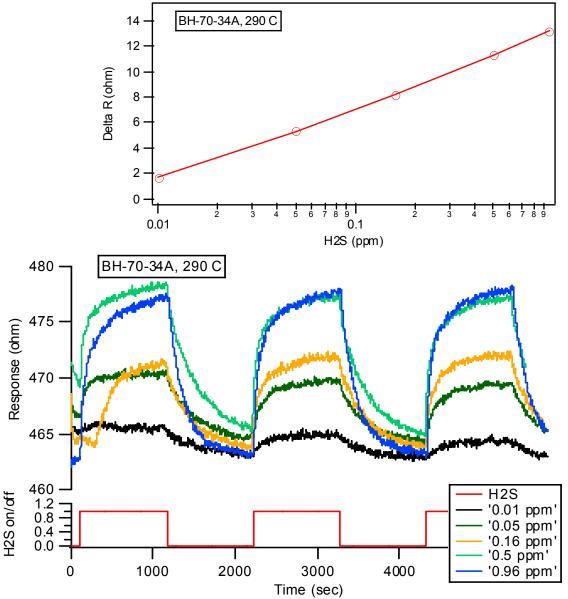
Stack Sensor -Thin Rh Quad-layer Dynamic Range

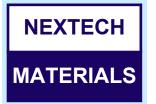

- Dynamic ranges
 - 160°C
 - 2.5 to 40% H₂
 - Linear responses
 - 2.5 to 20% H₂
 - 20 to 40% H₂
 - 2.4 to 40% H_2 in N_2

Stack Sensor – Thin Rh Quad-layer Long Term Performance


- 4% H₂/N₂
- 160 °C, 16 days
- Negligible drift
- Minor degradation

ATMI H₂S Sensor Development


- Targets
 - Temp: 400°C
 - Range: 0.05 ppm 0.5 ppm
- Approach
 - Ultra thin (< 50nm) metal film deposition on micro hotplate platform
 - 25 nm and thinner are discontinuous
 - 50 nm films continuous with poor adhesion
 - Additional interlayer improves adhesion



Rh Sensor Performance

- 290°C operation
- 4% H₂/N₂ background
- <u>10 ppb H₂S detection</u>
- 15.5 min on
- 15.5 min off
- Logarithmic response
- Delta-R linear with log of H₂S concentration between 10 – 1000 ppb

Summary of NexTech Accomplishments

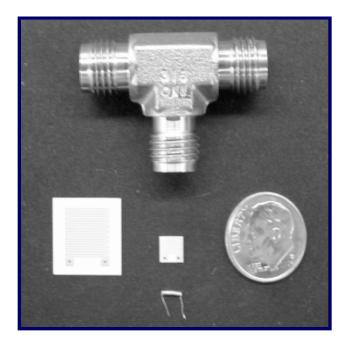
Sulfur Sensors

- Delivered alpha prototype to UTRC for evaluation
 - Obtained 400 hours of lifetime data
- Exhibited sensitivity at the 100 ppb level
- Cross-sensitivity to CO tested; not an issue
- Smaller substrate with integrated heaters are being tested for beta prototype calibration
- Automated stand for long-term testing has been constructed
- Established sensitivity of H₂S sensor in methane background

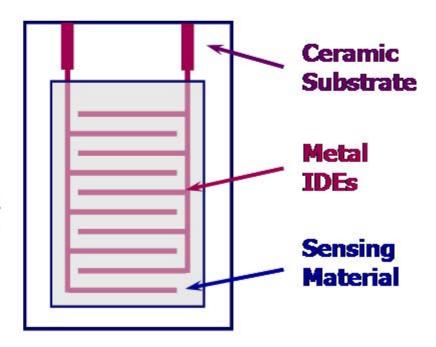
Carbon Monoxide Sensors

- Demonstrated sensitivity at the 5ppm level
- Addressing baseline drift issues
- Delivered alpha-prototypes to IIT and UTC
- Testing and verification of Los Alamos prototypes have begun

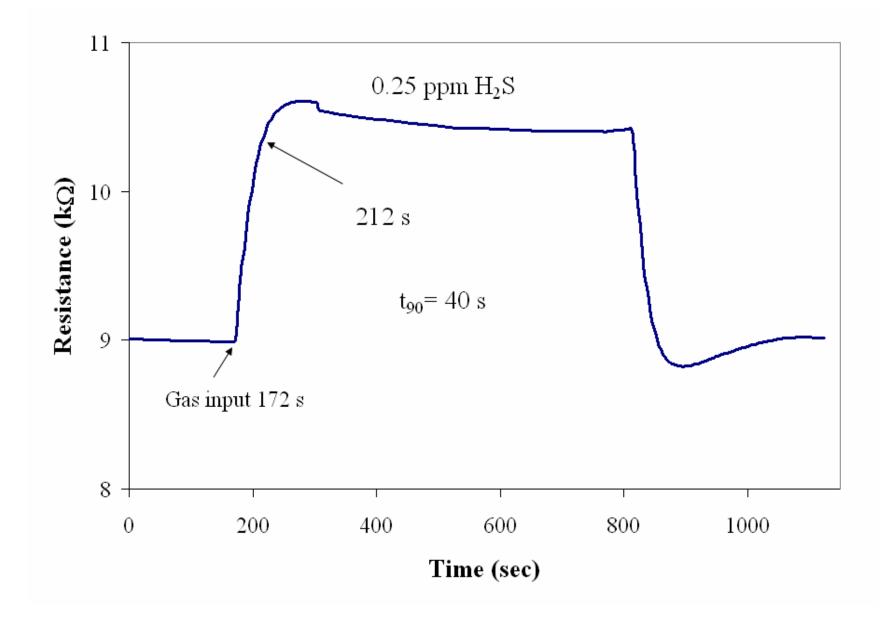
NEXTECH

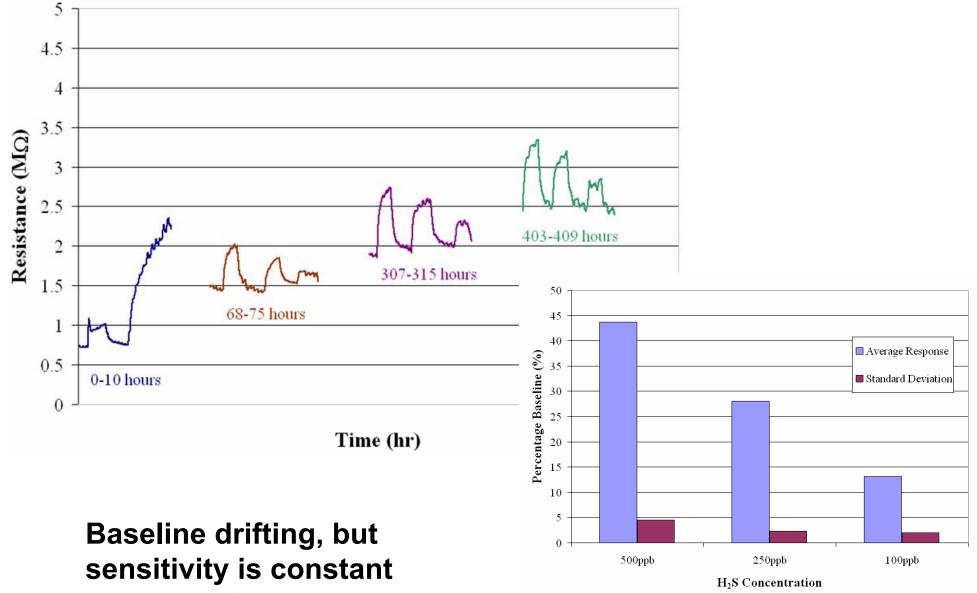

MATERIALS

NexTech Sensor Platforms

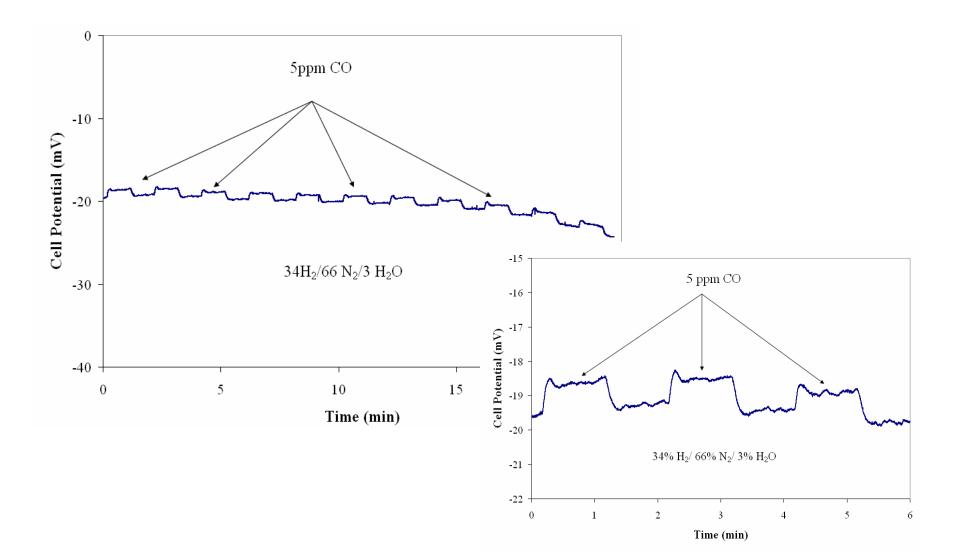

Mixed Potential Mode

Carbon Monoxide


Carbon Monoxide Hydrogen Sulfide

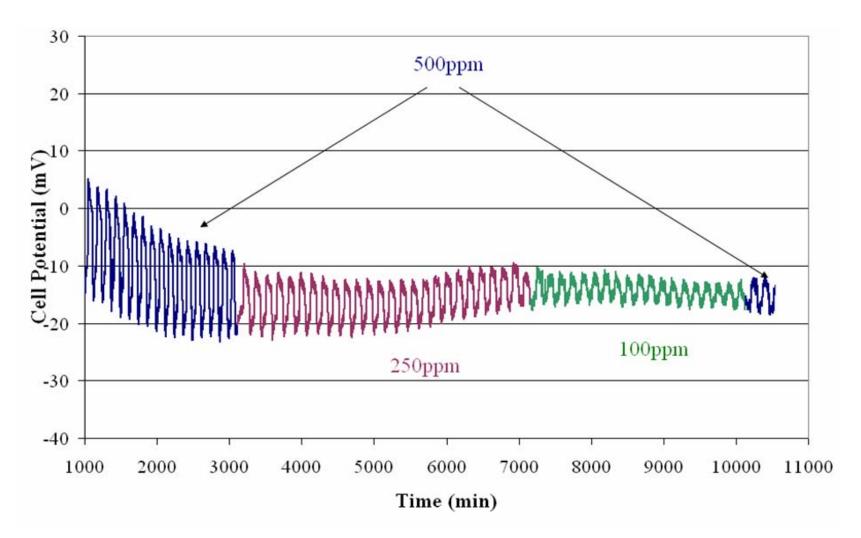

NEXTECH

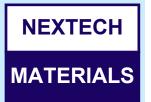
Resistive-Mode H₂S Sensors



MATERIALS H₂S Sensor: Long Term Testing

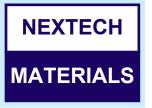
relative to baseline


MATERIALS CO Sensor Response to Low Concentrations

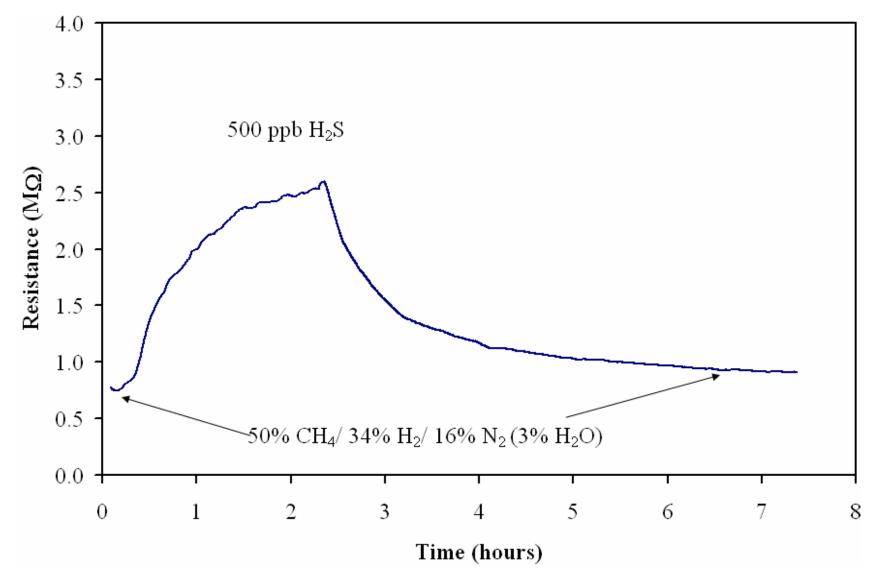

MATERIALS

NEXTECH

Long-Term CO Sensor Testing



Low surface area electrodes minimize baseline drift, but possible loss of sensitivity to higher CO contents with cycling



Los Alamos Collaboration

- LANL Contact: Dr. Rangachary Mukundan
- Testing agreement in place
- Ongoing collaboration on MP sensors
- Verification of LANL sensor performance in progress
- Initial tests show sensitivity at 25 ppm CO in N₂/H₂/17vol% H₂O
- Need to address challenges of humidifying Nafion membrane

H₂S Sensor Response in Methane

Responses to Previous Year Reviewers' Comments

- Redundancy between IIT and UTRC facilities.
 - Two independent laboratories with emphasis on different chemical and physical sensors.
- Need to look at other sensor work
 - IIT is continually looking at other sensor technologies and updating the sensor database
- A clear manufacturer has not been identified
 - ATMI and NexTech, for example, are addressing design for manufacture.
 - ATMI has sold technology to a sensor manufacturer for commercialization.

Future Work

- Address CO baseline drift issues
- Poisoning
 - Run in fuel cell mode to oxidize CO in situ
 - Thermal cycling experiments (desorb CO)
- Evaluate sulfur cross-sensitivity of CO sensor
- Continue collaboration with LANL on CO sensor
- LEL sensors
 - Focus on pd quad layer
 - Continue to improve life time performance
- Stack sensors
 - Focus on Rh quad layer
 - Optimize materials design
 - Characterize short and long term behavior

H₂S sensors

- Focus on Rh ultra-thin films
- Characterize short term concentration behavior
- Look for cross sensitivities

Hydrogen Safety

The most significant hydrogen hazard associated with this project is:

- Gas mixtures containing up to 70% by volume of hydrogen will be utilized.
- The presence of hydrogen does present a hazard if a leak occurs in the gas piping system so that hydrogen can mix with laboratory air.

Hydrogen Safety

Our approach to deal with this hazard is:

- Flammable gas detectors were located in our laboratory; a relay opens and turns off power to solenoid valves on the H_2 supply at H_2 levels above 10% of LEL.
- The LabView-based control program senses the alarm, shuts off all other gases and purges all gas lines with N₂.
- All valves used in the experimental apparatus are explosionproof.
- Pressure relief valves are used in all piping to prevent overpressurization of components.