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OverviewOverview
Timeline

• Start date: Oct 2003
• End date:  Open
• Percent complete: 30%

Barriers
A. Compressors/Expanders
C. Fuel Cell Power System 

Benchmarking
D. Heat Utilization
H. Start-up Time
R. Thermal and Water Mgmt

Budget
• Total funding: $400K

- DOE share: 100%
• FY04 funding: $400K
• FY05 funding: $400K

Partners
• Honeywell CEM+TWM projects
• IEA Annexes 17 and 20
• FreedomCAR fuel cell tech team
• HTM working group
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ObjectivesObjectives

Develop a validated system model and use it to assess 
design-point, part-load and dynamic performance of 
automotive fuel cell systems.
• Support DOE in setting R&D goals and research directions
• Establish metrics for gauging progress of R&D plans 
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ApproachApproach

Develop, document & make available versatile system 
design and analysis tool.
• GCtool: Stand-alone code on PC platform
• GCtool_ENG: Coupled to PSAT (MATLAB/SIMULINK)

Validate the models against data obtained in laboratory 
and at Argonne’s Fuel Cell Test Facility.

Apply models to issues of current interest.
• Work with FreedomCAR Technical Teams. 
• Work with DOE contractors as requested by DOE.
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Membrane Humidifier ModelMembrane Humidifier Model
Counterflow shell and tube configuration (Perma Pure)
• Mass transfer determined from gradient of membrane 

water content (λ) and diffusivity D(λ,T)
• Coupled heat and mass transfer
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Membrane Humidifier Model Validation Membrane Humidifier Model Validation 
(Data from Honeywell / Perma Pure)(Data from Honeywell / Perma Pure)

Mass transfer decreases above 50°C inlet dry air temperature
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Pressurized FCS with Membrane HumidifierPressurized FCS with Membrane Humidifier

• Demister between stack and humidifier not required
• Compressor discharge cooled with low-T stack coolant or air
• Possible to maintain stack at 80oC at all loads
• 60-85% outlet RH @ 25-50% ambient RH
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Model developed in FY04, validated with Honeywell/Emprise data
• EW model used in FY05 to support TWM Honeywell program
• Evaluated EW for high-temperature membranes at 120oC
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With EW in HTMWith EW in HTM--FCS, cathode air at 120FCS, cathode air at 120ooC can be C can be 
humidified to 10humidified to 10--30% RH at 2.5 atm and <15% RH at 1 atm30% RH at 2.5 atm and <15% RH at 1 atm
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SelfSelf--Start of PEFC Stacks from SubStart of PEFC Stacks from Sub--Freezing Freezing 
TemperaturesTemperatures

Reactions with species transport 
in five-layer MEA 
Formation and melting of ice
Effect of ice on ECSA & transport

Capillary transport of water in 
GDL & porous catalysts
T distribution in bipolar plate, flow 
channels and MEA

2-D Dynamic Simulation Model

Simulation under conditions for which self-start is possible at -20oC
P = 1 atm, Vcell = 0.4 V, SGice = 0.5,  50-µm membrane
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Simulation Result: Liquid Water FormationSimulation Result: Liquid Water Formation
Simulation under conditions for which self-start is possible 
• Ice and liquid water coexist between 18 and 22 s
• Liquid water volume decreases for t > 20 s
• May need to humidify air because stack heats up to 

70oC at 55 s
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Simulation results are sensitive to the assumed Simulation results are sensitive to the assumed 
bulk density of icebulk density of ice

• P = 1 atm, Vcell = 0.6 V, 50-µm membrane, Ti = -20oC 
• At SG = 0.2, cathode is completely covered with ice and 

stack temperature equilibrates below the melting point.
• Self start is possible for SG > 0.5.
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Simulated Effects of Membrane Thickness and Simulated Effects of Membrane Thickness and 
PressurePressure

• More rapid build-up of ice on cathode catalyst in a 
pressurized stack 

• Lower current density at pressure and with thicker 
membranes because of larger Ohmic overpotential 
across membrane 
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Self start is generally easier at lower cell voltages
• Self start is not possible at 0.8 V
• Self start is possible at 0.6 V but there is an intermediate 

period (25-30 s) over which the power decreases.
• Start up is robust at 0.4 V.
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Simulated Effect of Stack Heating
• Start-up from -20oC is more robust and faster if the

bipolar plate can be electrically heated. 
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Alternate Methods of StartAlternate Methods of Start--up from Subfreezing up from Subfreezing 
TemperaturesTemperatures

Start-up Time: Time to place the FCS in a state where it
is capable of producing 90% of rated power on demand.
Start-up Energy Consumption: Additional fuel energy
consumed on FUDS w.r.t FCS at normal operating T.
Alternate methods evaluated
1. Internal oxidation of hydrogen on MEA catalyst

- Constrained by flammability limits
2. External combustion of hydrogen

- Ineffective: 5.6 MJ of fuel energy needed to transfer 
1.4 MJ needed to heat the stack to 0oC from -20oC 

3. Insulated coolant tank with electrical heating
4. Insulated stack with electrical heating

- Maintain stack at threshold temperature
- Self-start stack at threshold T: < 10 s, 1 MJ of fuel energy
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Stack Heating to Threshold Temperature Stack Heating to Threshold Temperature 
Insulated Stack with Electrical HeatingInsulated Stack with Electrical Heating

• 1” insulation, 0.05 W/m.K
• Stack cools from 80oC to 

0oC in 13-25 h
• A 40-kW hybrid battery 

maintains stack at 0oC for 
6-24 h

Ambient Cool-Down Heat Loss
Temperature Time to 0oC at 0oC

-10oC 25 h 20 W
-20oC 19 h 40 W
-40oC 13 h 80 W

• Periodically operate FCS for ~4 minat 25% power
Recharge the battery (480 W.h)
Excess power (60%) to electrical heaters
Heat the stack from 0 to 80oC
5.3 MJ/day fuel energy consumption at -20oC ambient
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Completed study on fuel economy of hybrid loadCompleted study on fuel economy of hybrid load--
following fuel cell vehiclesfollowing fuel cell vehicles

Issues addressed in the study 
• How much gain in fuel economy can we expect if FCEVs

are hybridized with energy storage systems?
• How does the gain compare with ICE hybrids?
• How is the gain affected by North American, European

and Japanese drive cycles? 
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Generally favorable reviews with recommendations to
• Redirect away from fuel processing options
• Study effect of sub-zero oC startup and operation
• Place more emphasis on model development
• Keep engaged in thermal and water management
• Maintain close communications with fuel cell tech team

FY05 work scope consistent with above recommendations
• Focusing on direct hydrogen fuel cell systems
• Working on start-up from sub-freezing temperatures
• Developing models for enthalpy wheels, membrane
humidifiers, ice formation……..

• Working with Honeywell and TIAX
• Member of fuel cell tech team
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Proposed Future WorkProposed Future Work

• Continue work on freeze-start of fuel cell systems
• Continue collaboration with Honeywell on thermal and

water management system
• Continue to support DOE/FreedomCAR development

efforts
• Participate in validation effort 
• Explore CHP applications of FCS
• Support HFCIT program on system analysis
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Publications and PresentationsPublications and Presentations
Journal Publications
R. K. Ahluwalia, X. Wang, and A. Rousseau, “Fuel Economy of Hybrid Fuel Cell Vehicles,” Journal of Power Sources, (in 
print), 2005.
R. K. Ahluwalia and X. Wang, “Direct Hydrogen Fuel Cell Systems for Hybrid Vehicles,” Journal of Power Sources, 139, 
152-164, 2005. 
R. K. Ahluwalia, X. Wang A. Rousseau and R. Kumar, “Fuel Economy of Hydrogen Fuel Cell Vehicles,” Journal of Power 
Sources, 130,  192-201, 2004.

Conferences
R. K. Ahluwalia, X. Wang, and A. Rousseau, “Fuel Economy of Fuel Cell Hybrid Vehicles,” 2004 Fuel Cell Seminar, San 
Antonio, TX, November 1-5, 2004.
R. K. Ahluwalia, X. Wang, R. Kumar, “Fuel Cell Systems for Hybrid vehicles,” 2004 International PEM Fuel Cell 
Conference, Hsinchu, Taiwan, October 14-15, 2004.
R. K. Ahluwalia and X. Wang , “Performance of Hybrid Fuel Cell Vehicles,” Annex XX Meeting, Stuttgart, Germany, 
September 28,  2004.
R. K. Ahluwalia and X. Wang, “Systems Level Perspective on Humidification in Direct Hydrogen Fuel Cell Systems with a 
High-Temperature Membrane,” USDOE High Temperature Membrane Working Group Meeting, Philadelphia, PA, May 27, 
2004.

Presentations
R. K. Ahluwalia and X. Wang, “Startup of PEFC Stacks From Sub-Freezing Temperatures,” DOE Workshop on Fuel Cell 
Operations at Sub-Freezing Temperatures, Phoenix, AZ, February 1-2, 2005.
R. K. Ahluwalia and X. Wang, “Fuel Cell Systems for Hybrid Vehicles,” DaimlerChrysler Research and Technology, Ulm, 
Germany, September 27, 2004.
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Hydrogen SafetyHydrogen Safety

• This is an analytical and computer modeling project. 
There are no hydrogen safety issues involved.
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license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform 
publicly and display publicly, by or on behalf of the Government.
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