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Project Overview

Time line:
• Start date: October 2001
• End date: open 
• Percent complete: 50%

Budget:
• Funding FY02-05: $800k
• FY04: $250k
• FY05: $250k

Barriers addressed:
• Durability
• Cost
• Electrode performance
• Startup time/Transient 

operation
Collaborations:
• Korea Advanced Institute of 

Science and Technology:
Professor Joong-Myeon Bae

• Motorola
• Idaho National Laboratory



3

Pioneering 
Science and
Technology

U.S. Department of Energy, EERE
Hydrogen, Fuel Cells & Infrastructure Technologies Program

Project Objectives

• To develop a new solid oxide fuel cell 
(SOFC) concept for auxiliary power units 
and portable power applications

• Address the following SOFC issues:
• Stack sealing
• Startup time
• Durability to temperature cycling
• Materials and manufacturing cost

LaSrFeO3

tabilized zirconia

Nickel/YSZ

inless steel

Yttria-s

Sta

Anode-supported SOFC
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Technical approach addresses SOFC issues
• Support cell on metallic bipolar plate 

to improve durability, cyclability, and 
shock-resistance

• Minimize content of expensive 
ceramics (anode, electrolyte, and 
cathode)

• Fabricate cell components using 
powder metallurgy techniques

• Eliminate manufacturing steps to 
reduce cost

• Eliminate sealing issue by developing 
self-sealed design

Self-Sealed Metallic Bipolar 
Plate Supported SOFC
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Progress vs. FY05 Milestones
• Complete Cost Analysis for TuffCell Stacks (2/05)

Estimated Costs:
- Materials - $69/kW
- Manufacturing (Equipment, Personnel, Operating) - $134/kW
- Total:  $203/kW

• Fabricate and test a three-cell stack  (6/05)
- 2-Cell stack was built on 12/04.  Achieved 2 volts OCV in 3% H2 bal. He. 
- Three single cell units were tested in 1/05.
- 3-Cell stack built 3/05. Achieved 3 volts OCV in 50% H2, 3%H2O, bal. He

• Complete start-up time and cyclability tests  (9/05)
- Single cell stack units, cyclability tests have begun – Achieved 4 cycles 

at 10°/min heating rates.
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Basis of TuffCell and Anode-supported 
SOFC cost comparison 
• Previous Excel spreadsheet was written to calculate the materials 

and manufacturing costs of conventional Anode-supported SOFC 
stacks.

• The spreadsheet was updated and modified to calculate materials 
and manufacturing costs of TuffCell stacks.

• 12 worksheets of calculations for each SOFC type.
• Basis:

- Stack specifications: 5 kW, 42 V, 14x14 cm2 active, 60 cells
- Manufacturing: 

- 500,000 stacks/year 
- Conventional ceramic processing methods and equipment
- Plant operation: 24h/day,7day/wk, 49wk/yr

- Raw materials costs:  determined by direct contact with vendors, web-
based and published prices
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TuffCell provides significant cost savings 
over Anode-supported SOFC

Materials Equipment
Personne

l
Operating 

Cost Total
$69 $50 $70 $14 $203

(34%) (24%) (35%) (7%)
$99 $52 $60 $63 $274

(36%) (19%) (22%) (23%)
Anode-

Supported 
SOFC

TuffCell

• Cost of building SOFC Stacks - $/kWe (% total cost)

26% cost savings
due to reduction of materials

and operating costs
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Last year’s stack depended on conventional 
sealing methods

• Gasket seals depended 
on flat cells

• Corner seals difficult to 
achieve
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New seal concept simplifies stack building
• Edges of anode chamber 

sealed with metal

• Feed and exit tubes brazed 
into edge of stack unit

• Cells stack together as easily 
as batteries in a flashlight 

Circular geometry Stack test
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TuffCell design and fabrication process 
address SOFC shortcomings

Tape cast cell layers 
(w/o cathode)

Laminate and cut 
tapes & foam

Sinter in single high-
temperature process

Braze gas tubes
Slurry-coat cathode

• Thin layers of expensive ceramics

• Brittle ceramics bonded to tough 
metallic layers

• Single, programmed high temperature 
process 

• Single electrical contact plane 
between cells

• Self-sealed fuel chamber   (NEW)
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New sealed design test shows comparable 
performance to previous TuffCell tests

Thermal Cyclability of Single Cell TC-15
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First 3-cell stack:
• Stack reached open circuit potential
• Stack polarization test :

50% H2/He fuel, 3%H2O – air at 800°C
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Reviewers’ comments from FY ‘04 meeting
• Comment 1:  “Need successful scale-up / stack test to attract 

additional non-DOE investment.”

– The new seal concept has simplified stack building.  Single cell and 
multi-cell stacks are presently being fabricated, tested & improved. 

• Comment 2: “Focus on improving power density.”

– The co-firing process produces a reduced Ni anode.  This makes it 
more difficult to control the anode microstructure to produce high 
power densities.  As the overall sintering process is becoming 
finalized, more attention is being paid to optimizing the anode 
microstructure and performance. 

• Comment 3: “This concept could revolutionize SOFC design.”

– The metal supported SOFC concept is beginning to catch on with 
SOFC developers.  

– The new seal concept overcomes major sealing hurdles in building
SOFC stacks.
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• Improve single cell performance
• Demonstrate stack thermal cyclability with <30 min 

startup time 
• Provide sample cells to 

- Motorola for low power cell tests

- Idaho National Laboratory for High Temperature Steam 
Electrolysis 

• Demonstrate long term stack/cell performance tests 
• Transfer technology for scale-up and system integration 

Future Plans – FY ‘06 and Beyond
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The most significant hydrogen hazard 
associated with this project is:  
The greatest hydrogen hazard in this project is the possibility forming a flammable (4%< %H2 < 75%, by 
volume)* or an explosive (18%< %H2 < 59%, by volume) mixture with air  in a closed volume at ignition 
temperature (>500°C).  This could happen in two instances within the project.  The SOFC is sintered in 
hydrogen in a closed tube furnace at temperatures ranging from 800°C to 1400°C.  Also, during cell or stack 
testing, hydrogen flows through a closed anode chamber in the TuffCell.  In either case, if hydrogen is 
introduced into the closed chamber at the concentrations listed above without purging the air, ignition could 
occur.

*W. F. Baade, U. N. Parekh, and V. S. Raman, in Kirk-Othmer Encyclopedia of Chemical Technology, 2001, John Wiley & 
Sons, Inc., http://www.mrw.interscience.wiley.com/kirk, Accessed in 2005

Hydrogen Safety



18

Pioneering 
Science and
Technology

U.S. Department of Energy, EERE
Hydrogen, Fuel Cells & Infrastructure Technologies Program

Our approach to deal with this hazard is:
When hydrogen concentrations greater than 4 vol% are introduced into our system, it is first purged 
with nitrogen, helium, argon, or a non-flammable regen gas (<4% H2/ He) for sufficient time to remove 
oxygen out of the chamber down to parts per thousand levels. The sintering furnaces are tested for 
purge times using a residual gas analyzer, and automatic programs were set to flow nitrogen for the 
required time.  In the cell and stack test experiments, the cells are heated with regen gas flowing 
through the anode chamber and the hydrogen is introduced if the theoretical open circuit potential is 
achieved.  Both experiments are contained within fume hoods with high exhaust rates that prevent the 
accumulation of hydrogen within the hood. 

Hydrogen Safety
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