

Research & Development for Off-Road Fuel Cell Applications

Presented by Eric Simpkins Matthew Steinbroner - Program Manager IdaTech, LLC 4/12/05

FC43 Steinbroner

This presentation does not contain any proprietary or confidential information

Overview

Timeline

Barriers

Advanced Fuel Cell Solutions¹⁰

- Project start date
- Project end date
- Percent complete

12/01/04 12/31/07 7%

- Barriers addressed
 - P. Durability

Budget

Total project funding

- DOE share \$ 418,912
- Contractor share \$1,001,475
- Funding received in FY04
 - \$ 50,000
- Funding for FY05
 - **\$** 418,619

Partners

- IdaTech, LLC
- The Toro Company
- Donaldson
- UC Davis

Objectives - 2005

- Task 1: System Study
 - Identify off road vehicle conditions, as pertains to fuel cell system power production and utilization
 - Including:
 - Load profiles
 - Drive train, PTO, actuators, etc.
 - Force & speed
 - Acceleration

Objectives - 2005

- Task 2: Impulse & Vibration Study
 - Utilize existing information to generate profiles for typical impulse and vibration forces on the off road vehicle
 - Equip Toro electric vehicle with accelerometers

Objectives - 2005

- Task 3: Air Quality Study
 - Develop a database of possible environmental contaminants that could effect the operation of the fuel cell system (cathode contamination)
 - Construct single cell fuel cell test systems to evaluate the effects of air contaminants on the cathode side of the fuel cell
- Task 4: Fuel Cell Specification
 - No work defined for this year

Objectives by contractor

- Report on Load Profiles & Lifetime
- Air Filtration Project Report UC Davis
- Impulse & Vibration Project Report
- PEM Fuel Cell System Specification
- Final Report

Lead: UC Davis, Support: Toro

Lead: Donaldson, Support: IdaTech,

Lead: Donaldson, Support: IdaTech

Lead: Toro, Support: UC Davis

Full Team Responsibility

 Actively communicate results in public forums and distributed media in support of DOE's communications program.

Approach

- This program will utilize both existing and experimental data to generate information pertaining to the operation of a fuel cell system in an off-road environment. Specifically the program will address and identify:
 - Load profiles for an all electric Toro Workman
 - Load profiles for existing off road equipment (tractors, mowers, etc...)
 - Impulse and vibration information for existing off road equipment, as well as for a experimental data from a Toro Workman
 - Cathode contaminants that are "typical" in an off road environment
 - Fuel cell test apparatus that will identify the effects of the contaminants on the operation of a Fuel cell system
 - Design of mitigation for impulse, vibration, and air contaminants
 - Testing of the mitigation strategies

Advanced Fuel Cell Solutions¹⁰

Technical Accomplishments: Task 1: System Study

- Identification of a variety of load profiles for off road vehicles (agricultural tractors) has been accomplished, including:
 - Engine power and torque, PTO (Power Take Off), and Drawbar power (the power required to pull an implement at a uniform speed).

TEST NO.	TRACTOR MODEL	APPROX. MAX. TRACTOR BHP	IMPLEMENT MAKE AND MODEL	COUPLING IN PTO DRIVE	MAX. STARTI	NG TORQUE	MAX. OPERATIONAL	FORGUE PEAKS	AVE. TORQUE UNDER	WORK BEING PERFORMED	
					WITH NORMAL CLUTCH ENGAGEMENT, LB-IN	WITH RAPID CLUTCH ENGAGEMENT, LB-IN	AVERAGE CONDITIONS, LB-IN	NEAR PLUGGED CONDITIONS, LB-IN	NORMAL OPERATING CONDITIONS, LB-IN		
1	I	35	ENSILAGE HARVESTER A	STANDARD	4,900-6,400	10,800-15,370	4,680-6,390	5,450-7,140	2,720	CHOPPING HEAVY DRILLED CORN	
2	I	35	ENSILAGE HARVESTER A	SPEC. SLIP		8,660*	5,112-5,723	6,025-6,865	3,200	CHOPPING HEAVY DRILLED CORN	
3	9	40	ENSILAGE HARVESTER A	STANDARD		11,600	4,700-4,925	6,200-8,025	3.261	DRILLED CORN	
4	1	35	ENSILAGE HARVESTER B	STANDARD	2,600-4,000*		3,520-3,820	3,960-7,630*	2,390	DRILLED CORN	
5	1	35	FORAGE	STANDARD		14,600	3,730 - 7,200	6,370 - 7,200	2,870	CHOPPING GREEN	
6	1	35	HURVESIER C	SPEG. SLIP		9,800-7,530*	5,230- 8,700	6,100 - 8,700	3,270	CHOPPING GREEN	
7	I	35	FORAGE HARVESTER C	STANDARD		12,500 -10,900	6,060 - 7,460	9,500	3,600	CHOPPING GREEN	
8	ı.	35	FORAGE HARVESTER C	STANDARD		21,400				ATTEMPTING TO START A PLUGGED MACHINE	
9	1	35	CORN PICKER D	STANDARD	1,570 - 1,740	3,990	822-1,031		727	PICKING CORN	
10	1	35	BALER	STANDARD		18,300-20,600	5,860-7,470	12,100	1,140	BALING ALFALFA	
11	t	35	BALER	STANDARD	13,100		6,550-8,140	11,600-15,000	1,545	RECHECK OF	
12	ι	35	BALER	SPEC. SLIP	10,700 - 12,100*	10,700 - 12,100*	7,250 - 8,920	11,500-13,300*	2,250	BALING ALFALFA	
13	ι	35	BALER	SPEC. SLIP	10,100*		B,600-11,100	10,350-12,600	1,580	BALING STRAW	
14	9	40	BALER	STANDARD	12,250		7,749 -10,945	10,960-12,095	1,936	BALING ALFALFA	
15	Ł	35	BALER	STANDARD AND UNIVER	SAL JOINTS ALIGN	ED	4,601 - 5.867		1,363	BALING ALFALFA	
16	L	35	BALER	STANDARD	16,500		8,600	22,700		BALING ALFALFA	
17	!	35	BALER	SPEC. SLIP	5,000*	5,000*	5,000*	5,000*		BALING ALFALFA	
18	í í	35	COMBINE G	STANDARD		10,100-16,600*	3,760	9,380	1,890	COMBINING WINDROW	
19	1	35	G	SPEG. SLIP			7,150	7,760-9,130	1,700	COMBINING WINDROW	
20	1	35	G	SPEC. SLIP		7,350-8,650*	4,160-4,200	7,470	1,600	STRAIGHT COMBININ	
21	2	25	HAMMER MILL H	STANDARD	9,030	17,500 - 20,150	4,14,5	7,270	2,700	GRINDING EAR CORN	
22	1 ¹	35	HAMMER MILL	STANOARD	6,130		3,740#	14,900	2,140	GRINDING EAR CORN	
23	1	35	HAMMER MILL	SPEG. SLIP	8,230*	8,230*		6,920	4,210	GRINDING EAR CORN	
24	4	45	HAMMER MILL	STANDARD	18,150	25,800	7,800	13,000	5,450	GRINDING EAR CORN	

Table 1: Power take-off torsional loads[7]

Technical Accomplishments: Task 1: System Study

Engine horsepower and speed for corn picking, subsoiling, field cultivating and soil packing

Distribution of hours of tractor use by operations (average of 340 hours for

25 tractors)

Technical Accomplishments: Task 1: System Study

- 20 kW (26 hp) example:
 - In order to meet or exceed the performance of a traditional IC engine the hybrid fuel cell system would need to:
 - Have similar of greater torque reserve
 - Meet or exceed the rated power at operating speed
 - Be of equivalent or smaller size, weight, and weight distribution
- With the same tractor frame, a system with two electric motors, one for the drive and one for the PTO would be utilized. This would need to be a battery / fuel cell hybrid system, with the battery pack capable of meeting power spikes

Technical Accomplishments: Task 2: Impulse and Vibration Study

A Toro Workman 3000 tractor has been fitted with an electric power train, accelerometers, and is awaiting installation of the electric motor A fuel cell hybrid Workman e2050 was operated at Farmlinks Golf Course (Alabama), and generated data for operating speeds, motor current, and hybrid voltage stability. The Workman was also tied to a GPS system, to allow for synchronization of collected data, the vehicle activity, and location.

Technical Accomplishments: Task 3: Air Quality Study

- Air contaminant database under construction; this database will identify contaminants for investigation in the eight, single cell, test systems.
 - Sourced from:
 - Literature search internal and external to Donaldson
 - On-site air sampling of select off-road environments (i.e.
 - mining, construction, airport, agriculture, grounds care)

 Fuel cell air quality test systems designed, and components ordered. The test systems are currently under construction.

Technical Accomplishments: Task 3: Air Quality Study

Future Work - 2005

During the rest of this year the following tasks will be accomplished:

- Identify fuel cell operating requirements
- Identify mechanical stresses to the fuel cell
- Provide power train recommendations
- Prepare source identification graph (vibration & impulse)
- Impulse & vibration testing
- Provide impact and vibration testing results
- Test fuel cell system, post vibration testing

05/27/05 06/24/05 06/24/05 07/22/05 10/21/05 11/11/05 12/09/05

Future Work - 2006

- Next Year the following tasks will be accomplished:
 - Identify system vibration dampening strategies 03/01/06
 Delivery of air purifying and noise dampening solution 04/01/06
 A Toro Workman will be provided for testing 04/29/06
 List recommended air purification practices 06/01/06
 Build an implement dampening system 09/01/06

Schedule

Off Road Fuel Cell Schedule	2004	2005			2006				2007				
	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Kickoff													
											.		
Task 1: System Study													
Load Profiles		<u> </u>											
			I 1 1 I										
Task 2: Impulse & Vibration Study													
Source Input & Design Profile													
Impulse & Vibration Testing													
Post Test Performance Evaluation													
Mitigation Design													
Design Validation Testing													
Task 3: Air Quality Study													
Develop Database Baseline													
Construct Test Station													
Air Environment Field Testing													
Perform Air Contamination Study													
Design & Test Filters													
Validate Test Filters													
Task 4: Fuel Cell Specification													
Develop Fuel Cell System Specifications													
Project Completion													
Final Report													
Project Conclusion													

Hydrogen Safety

The most significant hydrogen hazard associated with this project is:

The operation of the single cell air quality test systems at the IdaTech facility. These systems are the only portion of this program which will actively utilize hydrogen.

Hydrogen Safety

Our approach to deal with this hazard is:

To utilize IdaTech's experience in hydrogen production, and handling to provide a safe operating environment. IdaTech is an ISO 9001 company, which has acquired UL and CE certification on equipment in the field, and has hundreds of man years of experience in hydrogen production and utilization.

IdaTech's test facility is equipped with hydrogen detectors which are connected to hydrogen sources to shut off in case of hydrogen detection.

IdaTech is familiar with UL and CE standards as pertaining to stationary and portable fuel cell and reformer applications, and will continue to put into practice these standards. These include standards from ANSI/CSA FC-1, ANSI/CSA FC-3, CSA 1.01 FC Supplemental, UL 2075, CGA G5.3, NFPA 70 article 692, NFPA 853, and other applicable standards.